Datapages, Inc.Print this page

PDF  Click to view images in PDF format.

 

Animation Model of West Central South America from the Early Jurassic to Late Miocene, with Some Oil and Gas Implications*

 

Terry Li Arcuri1 and George H Brimhall2

 Search and Discovery Article #10033 (2002)

1 1826 Alray Drive, Concord, CA 94519 ([email protected])

2 Department of Earth and Planetary Science, University of California, Berkeley, CA 94720

 *Submitted July 17, 2002; revised version submitted September, 20, 2002.

 

 Abstract

 A model has been constructed from stratigraphic analysis and magmatic emplacement data in which variations of the sedimentary environments of northern Chile and Argentina from Early Jurassic to late Miocene were compiled (206 Ma to 10 Ma). From these data a series of maps at 2 million year intervals have been constructed and used to complete an animation depicting the evolution of the regional sedimentary and magmatic systems. In this animation, tectonic influences which caused compression and generated uplift as well as eustatic and regional sea level fluctuations can be observed in the changing sedimentary environments.

During evolution of the region, numerous marine transgressive and regressive events occurred causing variations in the lithologies and sediment thickness. Also apparent from the magmatic emplacement ages is the eastward migration of the magmatic arc from the west coast in Early Jurassic to the present location on the border of Chile and Argentina.  Jurassic marine transgressions entering from the west caused the magmatic arc to become separated from the coast of South America by the narrow, marine, back-arc Domeyko basin. Regressions to the west tended to isolate smaller sub-basins, which display distinct sedimentary histories recorded during the regressive intervals. Cretaceous rifting coupled with a marine transgression led to the deposition of large quantities of marine shales in the Salta basin of northern Argentina and also in southern Bolivia. The marine shale deposited in these regions would later become source rocks for identified petroleum reserves in central South America. Major continental compression and uplift events through the Tertiary led to the formation of the Bolivian altiplano. Thick deposits of sediments shed during this uplift were deposited in basins near active uplift areas, burying petroleum source rocks, potentially resulting in the generation of hydrocarbons. To date, the Bolivian Altiplano region is a nonproductive hydrocarbon province.

The construction of sedimentary and magmatic environment maps has led to better understanding of the evolution of northern Chile, Bolivia, and Argentina. In particular, they can be used in the examination of depositional environments present in local areas for particular time intervals. These observations can assist in the geological interpretation of a region for hydrocarbon potential by showing the sedimentary depositional variations through numerous environments and any later magmatic interactions. With this new insight, productive and nonproductive hydrocarbon provinces can be related back through time to the deposition of source rocks, their structural evolution, and thermal maturation histories.

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

uAbstract

uFigure captions

uAnimation

uIntroduction

uData collection

uGeological evolution

uJurassic

uCretaceous

uTertiary

uConclusions

uAcknowledgments

uReferences cited

uSelected bibliography

 

  

 

 

 

 

Figure Captions

Figure 1. Location map of the study region in South America and map of sedimentary provinces, with indication of hydrocarbon production and potential (after St. John, 1984). The study region of northern Chile, Argentina, and southwestern Bolivia is from 20° to 28°S and 65° to 71°W.

 

Figure 2. Structural map of northern Chile, Argentina, and Bolivia with isopach map of Oxfordian sediments (from Prinz et al., 1994) (contours in red; regional fault systems in blue).

 

 

Figure 3. Facies/lithology model developed for the evolution animation model. The two sequences were used to interpolate between points: A) a continental siliciclastic sequence of conglomerate-sandstone-siltstone-shale and B) a shallow-marine sequence of carbonate-shale. Colors used for this figure are consistent with those in the evolution animation model.

 

Figure 4. Short-term (blue) and long-term (red) variations in eustatic and regional sea level compiled for South America (Haq et al., 1987; Ardill et al., 1998). Changes in sea level are measured relative to modern sea level, which is represented at 0 meters. Rising sea levels are indicated by an inflection of the curves toward the left, (a negative slope) whereas a lowering of sea level is indicated by inflections in the curves to the right (a positive slope). Gray fields indicate the time segments for which facies/lithologies are depicted in Figures 5, 6, and 7.

 

Figure 5. Lithologic maps of strata from the Jurassic Period representing 2-million-year increments. A) 194-192 Ma; B) 154-152 Ma; C) 146-144 Ma; D) legend for the lithologies used in this figure.

Click here to view sequence of Figure 5A, 5B, and 5C.

Figure 6. Lithologic maps of strata from the Cretaceous Period representing 2 million-year-increments. A) 110 to 108 Ma; B) 92 to 90 Ma; C) 70 to 68 Ma; D) legend for the lithologies used in this figure.

Click here to view sequence of Figure 6A, 6B, and 6C.

Figure 7. Lithologic maps of strata from the Tertiary Period representing 2-million-year increments. A) 58 to 56 Ma; B) 36 to 34 Ma; C) 12 to 10 Ma; D) legend for the lithologies used in this figure.

Click here to view sequence of Figure 7A, 7B, and 7C.

 

Animation

The accompanying animation (composed of geologic time-slice maps of Jurassic-Tertiary facies/lithologies, with calibrated sea-level curve) is in a .GIF format and is designed to have a run time of approximately 5 minutes. Pertinent geological events are described by text messages during which, the geological time within the model is paused. Highlighted zone in yellow progresses up the regional/eustatic sea-level curve with the current time interval displayed on the right.

If problems are experienced in viewing this animation (due to file size),  please download it to hard drive for offline viewing. To download, right mouse-click on link (to Animation) and select "Save Target As...;" then provide location for download and designate as new file (if desired).

 

 

 

Introduction

 The migration of magmatism, tectonic deformation, and changes in the distribution of sedimentary environments were all major influences in the geological evolution of the South American cordillera. All of these processes are linked in an action-reaction manner, such as the sedimentary response to tectonic uplift. In order to investigate the geological evolution of this region with a focus on the occurrence and maturation of hydrocarbons, a deconstruction of the sedimentary, tectonic, and magmatic events by both time and space has been preformed to generate a dynamic visualization animation model. 

The evolution of the Andean magmatic arc has been the subject of numerous investigations regarding its emplacement and migration (Petersen, 1999; Sillitoe and KcKee, 1996) and the relationship between subduction and magmatism (Kay et al., 1999; Kay and Mpodozis, 2001). Similarly, studies have been conducted investigating the structural development of the Andes (Hartley et al., 2000; Mon and Salfity, 1995; Reutter et al., 1988) and the sedimentology and stratigraphy of specific regions (Ardill et al., 1998; Gröschke et al., 1988; Harrington, 1961; Prinz et al., 1994; Von Hillebrandt et al., 1986). This study incorporates all of these styles of data to investigate the geological evolution of the northern Chile, Argentina, and southern Bolivia as a whole with a focus on hydrocarbon resources. The region investigated in this study ranges from 20° to 28°S  and from 65° to 71°W (Figure 1) from Early Jurassic, 206 Ma, through late Miocene, 10 Ma.  

The animation model was constructed from stratigraphic, sedimentologic, and magmatic emplacement data through which variations in the sedimentary and magmatic environments of northern Chile and Argentina could be determined. Palinspastic paleogeographic regional maps by Pindell and Tabbutt (1995) were used to delineate the region to be investigated (Figure 1). During Oxfordian in the Jurassic (159 to 154 Ma) the linear, north-south-trending Domeyko sedimentary basin was actively accumulating sediments, and within this basin, individual depocenters show sediment thickness variations during this 5 million year interval (Figure 2) (Prinz, 1986). Sediment thickness variations were caused by basin-bounding and basin-intersecting structures which were active during sediment accumulation. Many structures continued to be active throughout the Jurassic and effectively constrain sediment lithologies and their distributions in the model. The maps from Pindell and Tabbutt (1995) and Prinz (1986) do not distinguish between the various sedimentary lithologies deposited nor do they indicate the location and timing of magmatic emplacements. The lack of temporal resolution of the various sedimentary environments to intervals smaller than 20 million years obscured subtle yet important factors in the evolution of sedimentary environments and in the possible generation of petroleum.

Return to top.

Data Collection 

To generate the animation model, data were collected from field observations, mapping, published stratigraphic columns, geological maps, lithologic facies maps, magmatic emplacement ages, volcanic ash ages, and mineralization ages. Extrapolation between data points and interpolations through time were performed using a lithofacies transition model developed for this project. Sediment distributions were depicted with no attempt to reconstruct original basin geometry prior to deformations associated with faulting, compression, rifting, or uplift of the Andean cordillera. 

The facies transition model used for this project was based on several simplifying assumptions: 1) sediment is transported down-gradient, 2) grain size decreases with increasing distance from the source, 3) erosion is a continuous process on exposed bedrock, and 4) carbonate deposition is suppressed in environments with high siliciclastic input. Using these assumptions, a continental lithologic sequence of conglomerate-sandstone-siltstone-shale (Figure 3A) and a marine sequence of carbonate-shale was developed (Figure 3B). It was assumed that all lithologies with a finer grain size than the lithology described for a specific data point would be encountered with increasing distance from that point, down-gradient. For example, we infer a transition from a data point of conglomerate to sandstone, siltstone, and finally to shale with increasing distance down-slope. Multiple points of similar lithology were grouped into fields and lithologic homogeneity was assumed. This model allowed the authors to extrapolate between data points and through time to generate sedimentary environment lithofacies maps for the entire study region. 

Published maps depicting large-scale events such as marine transgressions and regressions allowed for sedimentary systems to be correlated to regional and continental scales (Marquillas and Salfity, 1988; Pindell and Tabbutt, 1995). The constructed maps depict marine sedimentary, continental (nonmarine) sedimentary, and magmatic environments as well as areas experiencing erosion or nondeposition from 206 Ma through 10 Ma. Sediment isopach maps (e.g., Figure 2) (Prinz et al., 1994) and fault compilation maps were used to constrain the boundaries between sedimentary environments and surrounding erosional areas. Individual map images at a two-million-year interval were generated in Canvas 6.0 and compiled into the final animation using GIF Animator 4.0 software from Ulead Systems. The lithofacies maps and the final animation were generated as part of the doctoral thesis of Terry Arcuri using computer facilities in the Earth Resources Center at the University of California, Berkeley.

 
Geological Evolution 

The geological evolution of the study area shows regional- and continental-scale processes that influenced the type and distribution of lithologies deposited from Early Jurassic to late Miocene. The completed model shows the effect of numerous marine transgressive and regressive events affecting the continent, with four Jurassic and one Cretaceous eustatic-driven transgressive events at 206 Ma, 190 Ma, 176 Ma, 168 Ma, and 80 Ma and one regional tectonic transgression at 151 Ma (Ardill et al., 1994). Figure 4 shows the eustatic and regional sea-level curves from the Jurassic to the present for northern South America (Haq et al., 1987; Ardill et al., 1998). All changes are measured relative to modern sea level, with long-term sea-level variations in red and short term fluctuation in blue. Arrows indicating shaded sections of the relative sea-level curve (Figure 4) label time intervals depicted in later lithofacies maps (Figures 5, 6, and 7). Marine transgressions correspond to negative slopes (inflections to the left) and regressions have positive slopes (inflections to the right) of the curves in Figure 4

Lithologic variations demonstrate global- and continental-scale active tectonic processes, such as continental rifting, the onset of Andean uplift, and the formation of the Bolivian altiplano by depicting the accumulation of conglomerates in basins near tectonically active zones. Also apparent from the magmatic emplacement ages is the eastward migration of the magmatic arc from the west coast in Early Jurassic to its present location on the border between Chile and Argentina (Sillitoe and KcKee, 1996; Petersen, 1999). The magmatic migration was also responsible for changes in the lithologies deposited in many of the regional sedimentary basins. In the completed model, we depict a progression of lithofacies maps from the Jurassic to late Miocene (206 to 10 Ma) in 2 million year increments. Selected time intervals are presented for discussion in the text for the Jurassic (Figure 5), the Cretaceous (Figure 6) and the Tertiary periods (Figure 7).

 

Jurassic 

The Jurassic sediments of northern Chile have been the subject of studies examining their genesis and the development of the environment in which they were deposited (Ardill et al., 1994, 1998; Gröschke et al., 1988; Harrington, 1961; Prinz, 1986; Von Hillebrandt et al., 1986). The tectonic history of the region has also been the focus of works investigating the connection between sediment thickness and forearc development (Hartley et al., 2000) and sub-basin evolution (Prinz et al., 1994). The conclusions from these works indicate the Jurassic System consisted of a marine back-arc basin through central Chile which experienced numerous transgressive-regressive events prior to its disappearance in Late Jurassic to Early Cretaceous (Prinz et al., 1994; Ardill et al., 1998). Five major Jurassic transgressions entered from the west at 206 Ma, 190 Ma, 176 Ma, 168 Ma, and 151 Ma and caused the magmatic arc to become separated from the coast of South America by the narrow, marine, back-arc Domeyko basin (Figure 5A). Intervening marine regressions at 197, 182, 170, and 155 Ma isolated sub-basins, which display distinct sedimentary histories recorded during the regressive sediment intervals (Figure 5B). Four of the marine transgressions (206, 190, 176, and 168 Ma) and three of the regressions (197, 182, and 170) correlate with eustatic sea-level changes seen in Figure 4 (Ardill et al., 1998). The regressive-transgressive marine sequence at 158-153 Ma is a regional tectonic effect on sea level caused by regional faulting and local basin accommodation. 

Tracking the specific lithologic variations through these basins and over the continent as a whole shows how magmatic and tectonic processes act in concert to influence sedimentary environments. Figure 5 shows several time intervals from the Jurassic in which the focus is the marine back-arc Domeyko basin. Figure 5A depicts the basin with strong connections to the ocean and a large area of distribution. As the basin was isolated from the ocean by a marine regression and the development of the coastal magmatic arc (Figure 5B), evaporite minerals, such as gypsum and halite, precipitated in various sub-basins. They were deposited within the basin at various times throughout Jurassic, culminating in the massive, basin-wide deposition of the Millonaria Evaporite Formation in late Oxfordian (154 Ma), when the basin experienced extreme evaporative concentration (Ardill et al., 1998; Prinz et al., 1994). In Figure 5C the back-arc basin has nearly vanished, with only small sub-basin remaining. These sub-basins continued to receive sediments in what was originally the deepest part of the original basin.  

Many occurrences of thick deposits of deep marine shales have been described in the Domeyko basin. These shale deposits of the Caracoles Formation do not appear to have generated substantial petroleum resources upon burial and thermal maturation. Any hydrocarbons that were generated in this region apparently were not trapped within the delineated basin. No major hydrocarbon reserves are located in the region of northern Chile in which the Domeyko back-arc basin persisted (Jensen and Oscar, 1996; St. John, 1984), although numerous seams of coal are encountered in lower Jurassic Caracoles Formation.

 Return to top.

Cretaceous 

Continental scale processes continued to make major changes throughout the study region during the Cretaceous period. Of these processes, continental rifting (Figure 6A and 6B) and rifting coupled with a marine transgression from the east were the most notable (Figure 6C). Eustatic sea level curves reached a maximum height in the middle Cretaceous at approximately 90 Ma (Figure 4) corresponding to the major transgressive flooding seen in the study area (Haq et al., 1987; Marquillas and Salfity, 1988). Marine basins developed in northern Argentina and central Bolivia in which large quantities of marine shale were deposited. These shales would later become the source of much oil and gas in a productive sedimentary province (St. John, 1984).  

Continental rifting began in Early Cretaceous which allowed transgressing marine waters to penetrate far into the continental interior (Marquillas and Salfity, 1988; Pindell and Tabbutt, 1994; Reutter et al., 1988). Figure 6A shows the well developed rift system through Argentina and Bolivia at 110 Ma. Distinct, fault-bounded basins were established at this time, and continued to be active into the Tertiary. This rift continued to expand, allowing a marine transgression at 90 Ma to flood much of the continent (Figure 6B), reaching a maximum flooding surface at approximately 70 Ma (Figure 6C). In Figure 6C (Maastrichtian age), northern Chile and Argentina are shown at the end of a continental rifting stage, with the sedimentary lithologies and their distributions as a direct response to this eustatic-driven marine transgression (Figure 4). Marine shale deposited in the Salta basin would later become source rocks for petroleum. Similar deep marine shales deposits in central Bolivia near Tupiza would later become a requisite for extensive oil and gas exploration (Baby et al., 1995). Throughout Late Cretaceous and into Early Tertiary, marine carbonates and shales were deposited extensively, covering most of northern Argentina and southern Bolivia. Erosional highlands of the San Pablo High, the Salta-Jujuy High, and the Traspampean Arch remained exposed throughout the Cretaceous transgressive event (Marquillas and Salfity, 1988) and were sources of siliciclastic sediments. The inland flood of marine waters was bounded on the west by the active volcanic front of the Andes, which constituted a long, linear volcanic highland. A marine regression began soon after 68 Ma, during which the marine waters drained from the continental interiors or were stranded in isolated inland basins, leading to the deposition of evaporite sequences as waters evaporated (Figure 6C). Some of the evaporite lithologies are involved as hydrocarbon traps in southern Bolivia and northern Argentina (Mon and Salfity, 1995). 

The first phase of the eastward migration of the magmatic arc began in Early Cretaceous (~110 Ma) (Figure 6A) and by 90 Ma reached the location in the central portion of Chile (Figure 6B), where it would be located until mid-Tertiary (Scheuber et al., 1994; Petersen, 1999). The magmatic migration from the coast inland is associated with the change from oblique to perpendicular subduction, an increase in the convergence rate (from 5 to 15 cm/a) as well as a shallowing angle of the subducting slab (Scheuber et al., 1994; Jaillard and Soler, 1996). The change in the angle of subduction was responsible for initiating the Peruvian uplift phase (~90 Ma) which affected all of northern Chile and extended into western Bolivia and Argentina. Compressional events associated with the active subduction zone to the west and extensional tectonics throughout Argentina and Bolivia reactivated Paleozoic faults and allowed for the thick accumulation of sediments in basins which would later be uplifted to form the Bolivian Altiplano (Welsink et al., 1995). Burial metamorphism of marine shales through the Altiplano region seemingly did not generate any significant hydrocarbons, for this region is classified as a nonproductive province (St. John, 1984).

 

Tertiary 

Tertiary regional evolution was dominated by compressional tectonics, continued eastward migration of the magmatic arc, and the formation of the Bolivian Altiplano (Figures 7A, 7B, and 7C). Andean uplift occurred in four major episodes during the Tertiary (~38 Ma, 23-25 Ma, ~10 Ma, and 3-5 Ma); these led to the deposition of large quantities of siliciclastic sediments, such as the Atacama gravel deposits of northern Chile. Marine sediments were not being deposited in the study area after early Eocene (~52 Ma), at which time erosion of uplifting regions became the dominant geological process. Magmatic evolution saw the rapid migration of the magmatic arc from its Cretaceous location through central Chile to the modern location at the border with Argentina and Bolivia. The eastward migration of the magmatic arc is linked to the shallowing angle of the subducting Nazca slab beneath the South American continent through the Tertiary (Scheuber et al., 1994)

Two of the major tectonic events which occurred during Late Tertiary were the uplift of the Andes and the formation of the Bolivian Altiplano (Fig. 7A to 7C). The orogeny commenced in late Eocene and continued well into the Miocene in a series of uplift phases, the Incaica (~38 Ma), the Pehuenche (23-25 Ma), the Quechua (~10 Ma), and most recently the Diaguita (3-5 Ma) (Hartley et al., 2000). Figure 7B shows large fields of conglomerates that were shed from the regions of magmatic emplacements associated with the onset of Andean uplift during the Incaica phase. The large region without sediments in western Bolivia is the emerging Bolivian Altiplano, which began to form in Early Tertiary at approximately ~58 Ma (Figure 7A) (Welsink et al., 1995). Sediment accumulations in the Tertiary were dominated by the siliciclastic sediments, resulting from the uplift and formation of the Andes and the Bolivian Altiplano. These thick deposits of siliciclastic sediments were responsible for the diagenesis (organic metamorphism) which acted to generate much of the hydrocarbons in northern Argentina and central Bolivia (Baby et al., 1995; 1985; Mon and Salfity, 1995; Pindell and Tabbutt, 1994; St. John, et al., 1984; Welsink et al., 1995). Small deposits of localized evaporite lithologies were precipitated from remnants of the Cretaceous transgressive marine waters trapped in eastern Chile and northwestern Argentina (Figure 7A and 7B). Deposition of evaporites persisted from late Eocene to the present, with modern salars such as the Salar de Atacama exemplifying these deposits (Figure 7A, 7B, and 7C). By late Miocene, major evaporite deposits formed in western Chile between Tocopilla and Calama, running parallel to the coast (Figure 7C). These deposits are the source of much of the non-metallic mineral wealth of Chile, including nitrates, sulfates, and borates (Goerler and Wilkes, 1991; Lieben et al., 1994; Naranjo and Paskoff, 1981; Suarez and Bell, 1987, Vila, 1986, 1985). 

Eustatic sea level curves indicate two major sea-level lowerings associated with global cooling events at ~30 Ma and ~12 Ma as well as numerous smaller fluctuations from Oligocene to middle Miocene (Figure 4). These events correlate with the climatic shift from semiarid to hyperarid in middle Miocene, causing the general desertification of continental South America.     

Return to top.

 

Conclusions 

The construction of sedimentary and magmatic lithofacies maps and their compilation into an animation has allowed visualization of the evolution of sedimentary and magmatic environments present at specific locations of northern Chile, Argentina, and southern Bolivia for particular time intervals. Temporal evolution of multiple sedimentary environments can be observed and linked to eustatic and regional sea-level fluctuations as well as to global tectonic influences generating uplift and compressional events. This information can be used to examine the evolution and maturation of the various productive and nonproductive hydrocarbon regions in the study area. 

Jurassic evolution of the study region was dominated by the development and evolution of the Domeyko back-arc basin. Shallow-marine sediments of the Caracoles Group were deposited throughout this basin that was separated from the ocean by coastal volcanic rocks. The sediments deposited within this basin reflect a series of four eustatic marine transgressive events at 206 Ma, 190 Ma, 176 Ma, and 168 Ma, and one regional tectonic transgression at 151 Ma. Three eustatic regressive events at 197 Ma, 182 Ma, and 170 Ma, and one regional tectonic regression at 155 Ma separated these transgressions. The final marine regression at 155 Ma was responsible for isolating multiple sub-basins in which the contained seawater evaporated and led to the deposition of massive evaporite sequences of the Millionaria Formation.  

During the Cretaceous, sedimentary and magmatic variations occurred which were consequences of changes in the obliqueness and rate of subduction of the Nazca plate beneath the South American plate. The eastward migration of the magmatic arc commenced at ~110 Ma and signified a shallowing angle of eastward subduction of the Nazca plate beneath the South American plate. This shallowing subduction angle also caused back-arc spreading and rifting in central Argentina and Bolivia. As rifting developed, a series of interconnected basins, a marine transgression at 80 Ma flooded major portions of Bolivia and northwestern Argentina. Deposition of marine shales in the Salta basin of Argentina and in the rift basin near Tupiza, Bolivia, would later become hydrocarbon source rocks. A subsequent marine regression at 68 Ma isolated sub-basins which underwent evaporation and eventual deposition of evaporite minerals in Early Tertiary. 

Tertiary was dominated by four major compressional uplift events at 58 Ma, 38 Ma, 25-23 Ma, and ~10 Ma, and also the continued eastward migration of the magmatic arc. Compression and uplift at ~58 Ma was responsible for the initiation of the formation of the Bolivian Altiplano, which continued to be uplifted and to shed sediments throughout the Tertiary. Thick sediments buried Cretaceous marine sediments and generated conditions favorable for the generation of hydrocarbons. Magmatic emplacement sites migrated eastward from their position in central Chile at the Cretaceous-Tertiary boundary (65 Ma) to a position near modern-day locations at the Chilean-Argentinean and Chilean-Bolivian borders by late Miocene (10 Ma). It is thought that some of these magmatic emplacements provided thermal conditions within the windows for generation of oil and gas from organic-rich marine sediments.

Numerous global cooling events between 38 Ma and 10 Ma were responsible for the overall desiccation of western Chile, preserving fossil landscapes to modern times. The onset of  hyperarid climatic conditions in the middle Miocene led to the formation of many South American evaporite deposits. Nitrate and sulfate deposits of the northern Atacama desert, yielding much wealth for Chile, formed in response to the Tertiary climatic conditions of the region. Spatial and temporal visualizations such as the one in the presented model allow for understanding of the interactions between specific magmatic and sedimentary systems to be investigated. Moreover, these interactions and the formation of various lithologies can be directly related to the eustatic sea-level changes, plate subduction, and continental-scale tectonics, which act in concert to shape the geology and morphology of the South American continent. In this framework, productive and nonproductive sedimentary provinces can be related back to the deposition of potential source rock and the geological processes that acted to generate any viable resources.

 

Acknowledgments

       The authors would like to express appreciation to the following people; Irene Montero S. and  Tina Takagi for discussions leading to improvements in the presentation of this material. This project was completed during doctoral research of Terry Arcuri, performed at the Earth Resources Center, University of California, Berkeley and made possible by a generous grant from the Exploration Division of Codelco, Chile.

 Return to top.

References Cited

 Ardill, J., S. Flint, G. Chong, and H. Wilke, 1998, Sequence stratigraphy of the Mesozoic Domeyko basin, northern Chile: Journal of the Geological Society of London, v. 155, p. 71-88.

Ardill, J., G. Chong, and S. Flint, 1994, High resolution sequence stratagraphic analysis of the Mesozoic Domeyko basin, northern Chile: 7 Congreso Geologico Chileno; Actas, v. 1, p. 393-396.

Baby, P., I. Moretti, B. Guillier, R. Limachi, E. Mendez, J. Oller, and M. Specht, 1995, Petroleum systems of the northern and central Bolivian sub-Andean zone: in A. Tankard, S. Suarez, and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62,  p. 445-458.

Gröschke, M., A. Von Hillebrandt, P. Prinz, L. A. Quinzio, and H. G. Wilke, 1988, Marine mesozoic paleogeography in northern Chile between 21°- 26° S: in H. Bahlburg, C. Breitkreuz, and P. Giese, eds., The Southern Central Andes, Lecture notes in earth sciences 17, Springer, p. 105-117.

Goerler, K., and E. Wilkes, 1991, Cordillera de la Sal/Salar de Atacama; an Oligocene to Recent record of continental evaporite sedimentation in northern Chile: Sedimentary and Paleolimnological Records of Saline Lakes.

Haq, B., U., J. Hardenbol, and P. R. Vail, 1987, Chronology of fluctuating sea levels since the Triassic: Science, v. 235, p. 1156-1167.

Harrington, H., 1961, Geology of parts of Antofagasta and Atacama provinces, northern Chile: AAPG Bulletin, v. 45, no. 2, p. 169-197.

Hartley, A. J., G. May, G. Chong, P. Turner, S. J. Kape, and E. J. Jolley, 2000, Development of a continental forarc: A Cenozoic example from the Central Andes, northern Chile: Geology, v. 28, no. 4, p. 331-334.

Jensen I., and L. Oscar, 1985, Potencial petrolifero del Mesozoico marino en la Cuenca de Atacama; consideraciones en relacion a su historia de subsidencia, evolucion geotermica y posibilidades generativas: Actas-Congreso Geologico Chileno, v. 4, p. 3.651-3.673.

Jaillard, E., and Soler, P., 1996, Cretaceous to early Paleogene tectonic evolution of the northern central Andes (0-18°S) and its relations to geodynamics: Tectonophysics, v. 259, p. 41-53.

Kay, S. M., and C. Mpodozis, 2001, Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust: GSA Today, v. 11, no. 3, p. 2-9.

Kay, S. M., C. Mpodozis, and B. Coira, 1999, Neogene magmatism, tectonism, and mineral deposits of the central Andes (22 to 33 S Lat): in B. J. Skinner, ed., Geology and ore deposits of the central Andes, Special publication No. 7, Society of Economic Geologists, p. 27-59.

Lieben, F., R. Morita, L. Fontbote, and D. Fontignie, 1994, Sr isotopic composition of barite occurrences in the Lower Cretaceous back-arc basin between Copiapo and Vallenar: 7 Congreso Geologico Chileno; Actas, v. 2, p. 1506-1509.

Marquillas, R. and J. Salfity, 1988, Tectonic framework and correlation of the Cretaceous-Eocene Salta group; Argentina: in H. Bahlburg, C. Breitkreuz, and P. Giese, eds., The Southern Central Andes, Lecture notes in earth sciences 17, Springer, p. 119-136.

Mon R., and J. Salfity, 1995, Tectonic evolution of the Andes of Northern Argentina: in A. Tankard, S. Suarez, and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 269-283.

Naranjo, J. and R. Paskoff, 1981, Estratigrafia de los depositos Cenozoicos de la region de Chiu chiu-Calama, desierto de Atacama: Revista Geologica de Chile, 13-14, 79-85.

Petersen, U., 1999, Magmatic and metallogenic evolution of the central Andes: in Society of Economic Geologists, Skinner, B.J., ed., Geology and ore deposits of the central Andes. Special publication No. 7, p. 109-153.

Pindell, J. and K. Tabbutt, 1994, Mesozoic-Cenozoic Andean paleogeography and regional controls on hydrocarbon systems: in Tankard,  Suarez, and Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 101-128.

Prinz, P., 1986, Mitteljurassische Korallen als Flachwasseranzeiger in N-Chile: Berliner Geowissenschaftliche Abhandlungen, Reihe A: Geologie und Palaeontologie, v. 110 , p. 168-169.

Prinz, P., H. G. Wilke, and A. Von Hillebrandt, 1994, Sediment accumulation and subsidence history in the Mesozoic marginal basin of Northern Chile: in K. J. Reutter, E. Scheuber, and P. J. Wigger, eds., Tectonics of the Southern Central Andes; Structure and evolution of an active continental margin, p. 219-232.

Reutter, K. J., P. Giese, H. J. Götze, E. Scheuber, K. Schwab, G. Schwartz, and P. Wigger, 1988, Structures and crustal development of the central Andes between 21° and 25° S: in H. Bahlburg, C. Breitkreuz, and P. Giese, eds., The Southern Central Andes, Lecture notes in earth sciences 17, Springer, p. 231-261.

Scheuber, E., T. C. Bogdanic, A. Jensen, and K. J. Reutter, 1994, Tectonic development of the Northern Chilean Andes in relation to plate convergence and magmatism since the Jurassic: in A. Tankard, S. Suarez, and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 121-139.

Sillitoe, R.H., and E. H. McKee, 1996, Age of Supergene Oxidation and Enrichment in the Chilean Porphyry Copper Province: Economic Geology, p. 91, p. 164-179.

St. John, B., A. W. Bally, and H. D. Klemme, 1984, Sedimentary provinces of the world – Hydrocarbon productive and nonproductive: The AAPG, Tulsa, Oklahoma, Map with text.

Suarez, M. D., and M. C. Bell, 1987, Upper Triassic to Lower Cretaceous continental and coastal saline lake evaporites in the Atacama region of northern Chile: Geological Magazine, v. 124, no. 5, p. 467-475.

Vila, T. G., 1985, Mapa tectogenico de yacimientos no metalicos del norte Chile Departamento de geociencias, Universidad  de Concepcion, Map.

Vila, T. G., 1986, Fichas Mineralogenicas de yacimientos minerales no-minerales en el norte de Chile: in J. Fratos, R. Oyaruzan, and M. Pincheira, eds., Geologia y recoursos minerales de Chile. Tomo II.

Von Hillebrandt, A., M. Gröeschke, P. Prinz, and H. G. Wilke, 1986, Marines Mesozoikum in Nordchile zwischen 21 Grad und 26 Grad S: Berliner Geowissenschaftliche Abhandlungen, Reihe A: Geologie und Palaeontologie, v. 66, no. 1, p. 169-190.

Welsink, H. J., E. Martinez, O. Aranibar, and J. Jarandilla, 1995, Structural inversion of a Cretaceous Rift Basin, Southern Altiplano, Bolivia: in A. Tankard, S. Suarez, and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 305-324.

 Return to top.

Selected Bibliography

 Abad, E., 1976, Las Formaciones Cerrillos y Hornitos al Norte de Vallenar, Provincia de Atacama, Chile: Actas - Congreso Geologico Chileno, v. 1, p. A97-A114.

Alpers, C. N. and G. H Brimhall, 1988, Middle Miocene climatic change in the Atacama desert, northern Chile: Evidence from supergene mineralization at La Escondida: GSA Bulletin, v. 100, p. 1640-1656.

Ambrus, J., 1977, Geology of the El Abra Porphyry Copper Deposit, Chile: Economic Geology, v. 72, p. 1062-1085.

Amstutz, G. C., M. E. Cisternas, L. L. Díaz, L. Fontboté, J. Frutos, C. Mayer, S. T. Schmidt, and A. Wauschkuhn, 1985, Relaciones entre algunos yacimientos de Ag, Zn, Fe y Ba y las sequencias marinas tras-arco del Jurasico y Cretacio inferior en el norte de Chile: Actas Congreso Geologico Chileno, v. 4, p. 435-442.

Andriessen, P., and K. Reutter, 1994, K-Ar and Fission Track Mineral Age Determination of Igneous Rocks Related to Multiple Magmatic Arc Systems Along the 23° S Latatude of Chile and NW Argentina: in K. J. Reutter, E. Scheuber, and P. J. Wigger, eds., Tectonics of the Southern Central Andes; Structure and Evoultion of an Active Continental Margin, p. 141-155.

Arcuri, T. L., and G. H Brimhall, The chloride source for atacamite mineralization at the Radomiro Tomic porphyry copper deposit, northern Chile: Economic Geology, in review.

Ardill, J. R., S. Flint, G. D. Chong, and H. Wilke, 1998, Sequence stratigraphy of the Mesozoic Domeyko basin, northern Chile: Journal of the Geological Society of London, v. 155, p. 71-88.

Ardill, J. R., G. D. Chong, and S. Flint, 1994, High resolution sequence stratagraphic analysis of the Mesozoic Domeyko Basin, northern Chile: 7 Congreso Geologico Chileno; Actas, v. 1, p. 393-396.

Arevalo, C., 1994, La cuenca Hornitos; un hemigraben extensional del Cretacico Superior-Paleoceno Inferior en la Precordillera de Copiapo: 7 Congreso Geologico Chileno; Actas, v. 1, p. 397-401.

Arevalo, C., O. Rivera, S. Iriarte, and C. Mpodozis, 1994, Cuencas extensionles y campos de calderas del Cretacico Superior-Terciario inferior en la Precordillera de Copiapo (27 degrees 28 degrees S) : Chile, 7 Congreso Geologico Chileno; Actas, v. 2, p. 1288-1292.

Baby, P., I. Moretti, B. Guillier, R. Limachi, E. Mendez, J. Oller, and M. Specht, 1995, Petroleum systems of the northern and central Bolivian sub-Andean zone: in A. Tankard, S. Suarez, and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 445-458.

Baeza, A. L., 1979, Distribucion de facies sedimentarias marinas en el Jurasico de Cerritos Bayos y zonas adyacentes: Norte de Chile, Actas - Congreso Geologico Chileno, Tomo III, 2, H45-H61.

Behn, G., F. Camus, and P. Carrasco, 2002, Aeromagnetic signature of porphyry copper systems in northern Chile and its geologic implications, Chile: Economic Geology, v. 96, p. 239-248.

Bell, C. M., 1991, The relationships between sedimentary structures, transport directions and dune types in Mesozoic aeolian sandstone, Atacama region, Chile: Sedimentology, v. 38, no. 2, p. 289-300.

Bell, C. M., and M. D. Suarez, 1991, Late Triassic fluvial and marine shelf succession, Quebrada Dona Ines Chica, Atacama region, northern Chile: Journal of South American Earth Sciences, v. 4, no. 4, p. 287-293.

Bell, C. M., 1989, Saline lake carbonates within an Upper Jurassic-Lower Cretaceous continental red bed sequence in the Atacama region of northern Chile: Sedimentology, v. 36, p. 651-663.

Bell, C. M., and M. D. Suarez, 1985, Formation Quebrada Monardes; depositacion fluvial en un ambiente arido, Jurasico-Cretacio, Atacama: Actas - Congreso Geologico Chileno, v. 4, no. 1, p. 1.29-1.37.

Bevacqua, P., 1994, Descripcion geologica y evolucion del delta del Rio San Pedro, Salar de Atacama, Chile: 7 Congreso Geologico Chileno; Actas, v. 1, p. 235-239.

Biase, F., 1985, El Jurasico del Cerro La Ballena, II Region, Provincia de Antofagasta: Actas - Congreso Geologico Chileno, v. 4, no. 1, p. 235-248.

Biase, F., 1985, Noticia preliminar sobre el Hallazgo del Liasico marino en los Cerros de Cuevitas, Provincia de Antofagasta: Actas - Congreso Geologico Chileno, v. 4, no. 1, p. 249-260.

Bogdanic, T. C., and G. D. Chong, 1985, Bioestratigrafia del Jurasico de la zona preandina Chilena entre los 24° 30’ – 25° 30’ de Lat. Sur: Actas - Congreso Geologico Chileno, v. 4, no. 1, p. 38-45.

Bogdanic, T., A. Von Hillebrandt, and L. A. Quinzio, 1985, El Aaleniano de Sierra de Varas, Cordillera de Domeyko Antofagasta, Chile: Actas - Congreso Geologico Chileno, v. 4, no. 1, p. 58-65.

Boric, R. P., F. F. Diaz, and V. J. Maksaev, 1987, Geologia y yacimientos metaliferos de la region de Antofagasta, Mapa: Servicio Nacional de geologia y mineria.

Boric, R. P., F. F. Diaz, and V. J. Maksaev, 1990, Geologia y yacimientos metaliferos de la region de Antofagasta: Servicio Nacional de geologia y mineria, Boletin No. 40.

Bossi, G. E., C. M. Muruaga, and I. J. C. Gavriloff, 1999, Sedimentacion: Sierras Pampeanas. Geologia del Noroeste Argentino: Relatorio del XIV Congreso Geologico Argentino, Tomo I, Salta, Argentina, p. 329-360.

Buchelt, M., and C. Tellez-Cancino, 1988, The Jurassic La Negra Formation in the area of Antofagasta, Northern Chile (lithology, petrography, geochemistry) : Lecture Notes in Earth Sciences, v. 17, p. 171-182.

Campusano, T. B., 1990, Kontinentale sedimentation der Kreide und des alttertiars im umfeld des subduktionsbedingten magmatismus in der chilenischen prakordillere (21°-23° S): Berliner Geowissenschaftliche Abhandlungen, Reihe A, v. 123, p. 72.

Camus, F., and J. H. Dilles, 2002, A special issue devoted to porphyry copper deposits of northern Chile: Economic Geology, v. 96, p. 223-237.

Camus, F., and M. Skewes, 1991, The Faride epithermal silver-gold deposit, Antofagasta region, Chile: Economic Geology, v. 86, p. 1222-1237.

Carrasco, M., and G. D. Chong, 1985, Geologia del distrito Argenifero de Challacollo, primera region de Tarapaca, Chile: IV Congreso Geologico Chileno, p. 550-563.

Cecioni, G., A. A. Meyerhoff, and H. H. Tietz, 1988, Geology, Geomorphology, and Petroleum possibilities of El Godo area, Iquique, Chile: Journal of Petroleum Geology, v. 11, no. 3, p. 245-276.

Cecioni, A., 1986, Dataciones radiometricas de rocas igneas y metamorficas del ambito andino meridional: in J. Fratos, R. Oyaruzan, and M. Pincheira, eds., Geologia y recoursos minerales de Chile, Tomo II.

Charrier, R., and N. Muños, 1995, Jurassic Cretaceous Paleogeographic Evolution of the Chilean Andes at 23° -24° S Latitude and 34° -35° S Latitude: A Comparative Analysis: in A. Tankard, S. Suarez, and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 203-217.

Charrier, R., and K. Reutter, 1994, The Purilactis Group of northern Chile; boundary between arc and backarc from Late Cretaceous to Eocene: in K. Reutter, E. Scheuber, and P. J. Wigger, eds., Tectonics of the southern Central Andes; structure and evolution of an active continental margin, p. 189-202.

Chong, G., 1976, Las relaciones de los Sistemas Jurasicos y Cretacico en la zona preandina del Norte de Chile: Actas - Congreso Geologico Chileno, v. 1, p. A21-A42.

Cisternas, M. E., and L. L. Diaz, 1990, Geologic evolution of the Atacama Basin during the Lower Cretaceous: in L. Fontbote, G. C. Armstutz, C. Miguel, C. Esteban, and J. Frutos , eds., Stratabound Ore Deposits in the Andes; Special Publication of the Society for Geology Applied to Mineral Deposits, v. 8, p. 495-504.

Cisternas, M. E., 1985, Zur Entwicklung einer Sabkha-Fazies in der unterkretazischen Abfolge in der Region Atacama, Nordchile: 9. Symposium on Latin-American Geosciences; Zentralblatt fuer Geologie und Palaeontologie, Teil I: Allgemeine, Angewandte, Regionale und Historische Geologie, v. 9-10, p. 1325-1336.

Cisternas, M. E., L. Díaz, L. Fontboté, C. Mayer, and G. C. Amstutz, 1985, Nuevos antesedentes sobre la evolucion de la cuenca Neocomiana en la zona Copiapo-Vallenar: Actas - Congreso Geologico Chileno, v. 4, p. 1.599-1.612.

Cladouhos, T. T., R. W. Allmendinger, B. Coira, and E. Farrar, 1994, Late Cenozoic deformation in the central Andes: fault kinematics from the northern Puna, northwestern Argentina and southwestern Bolivia: Journal of South American Earth Sciences, v. 7, no. 2, p. 209-228.

Coira, B., J. Davidson, C. Mpodozis, and V. Ramos, 1982, Tectonic and magmatic evolution of the Andes of northern Argentina and Chile: Special Issue; Magmatic Evolution of the Andes; Earth-Science Reviews, v. 18, no. 3-4, p. 303-332.

Comínguez, A., and V. Ramos, 1995, Geometry and Seismic Expression of the Cretaceous Salta Rift System, Northwestern Argentina: in A. Tankard, S. Suarez, and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 325-339.

Cornejo, P., C. Mpodozis, S. M. Kay, and A. J. Tomlinson, 1994, Volcanismo biomodal en regimen extensional del Cretacico superior-Eoceno en la region de El Salvador (26 degrees -27 degrees S), Chile: 7 Congreso Geologico Chileno; Actas, v. 2, p. 1306-1310.

Cornejo, P., R. M. Tosdal, C. Mpodozis, A. J. Tomlinson, O. Rivera, and C. M. Fanning, 1997, El Salvador, Chile porphyry copper deposit revisited: Geologic and geochronologic framework: International Geology Review, v. 39, p. 22-54.

Corvalan, J., 1973, Estratigrafia del Neocomiano Marino de la Region al Sur de Copiapo, Provincia de Atacama: Revista Geologica de Chile, v. 1, p. 13-36.

Cuadra C., P. and G. Rojas S., 2002, Oxide mineralization at the Radomiro Tomic porphyry copper deposit, northern Chile: Economic Geology, v. 96, p. 387-400.

Dallmeyer, R. D., M. Brown, J. Grocott, G. K. Taylor, and P. J. Treloar, 1996, Mesozoic Magmatic and Tectonic Events within the Andean Plate Boundary Zone, 26°-27°30´, North Chile: Constraints from 40Ar/39Ar Mineral Ages: Journal of Geology, v. 104, p. 19-40.

Damm, K. W., S. Pichowiak, R. S. Harmon, W. Todt, S. Kelley, R. Omarini, and H. Niemeyer, 1990, Pre-Mesozoic evolution of the central Andes; The basement revisited: in S. M. Kay, and C. Rapela, eds., Plutonism from Antarctica to Alaska, GSA Special Paper 241, p. 101-126.

Damm, K. W., R. S. Harmon, and S. Kelley, 1994, Some Isotopic and Geochemical Constraints on the Origin and evolution of the Central Andean Basement (19° -24° S): in K. J. Reutter, E. Scheuber, and P. J. Wigger, eds., Tectonics of the Southern Central Andes; Structure and Evoultion of an Active Continental Margin, p. 263-275.

Davidson, J., and C. Mpodozis, 1991, Regional geologic setting of epithermal gold deposits, Chile: Economic Geology, v. 86, p. 1174-1186.

De Silva, S. L., 1989, Geochronology and stratigraphy of the ignimbrites from the 21°30' S to 23°30´ S portion of the Central Andes of northern Chile: Journal of Volcanology and Geothermal Research, v. 37, no. 2, p. 93-131.

Dilles, J. H., G. L. Farmer, and C. W. Fields, 1995, Sodium-calcium alteration by non-magmatic saline fluids in porphyry copper deposits: Results from Yerington, Nevada: in J. F. H. Thompson, ed., Magmas, Fluids, and Ore Deposits, Mineralogical Association of Canada, Short Course Series, 23.

Espinoza, S. R., H. G. Véliz, J. L. Esquivel, J. F. Arias, and B. Moraga, 1996, The Cupriferous Province of the Coastal Range, Northern Chile: in F. Camus, R. Sillitoe, and R. Petersen, eds., Andean copper deposits: New discoveries, mineralization, styles and metallogeny, Society of Economic Geologists Special Publication No. 5, p. 19-32.

Farrar, E., A. H. Clark, S. J. Haynes, G. S. Quirt, H. Conn, and M. Zentilli, 1970, K-Ar Evidence for the Post-Paleozoic Migration of Granitic Intrusion Foci in the Andes of Northern Chile: Earth and Planetary Science Letters, v. 10, p. 60-66.

Feraud, G., L. Aguirre, D. Morata, M. Veraga, E. Puga, and A. D. Federico, 1998, Precise time constraints on the evolution of an extensional basin from the Coastal Range of central Chile: 23RD General Assembly of the European Geophysical Society; Part I, Society Symposia, Solid Earth, Geophysics and Geodesy; Annales Geophysicae (1988), v. 16, Suppl. 1, p. 31.

Flint, S., H. Clemmey, and P. Turner, 1988, The Lower Cretaceous Way Group of northern Chile; an alluvial fan-fan delta complex: Sedimentary Geology, v. 46, no. 1-2, p. 1-22.

Flint, S., and P. Turner, 1988, Alluvial fan and fan-delta sedimentation in a forearc extensional setting; the Cretaceous Coloso Basin of northern Chile: in W. Nemec, and R. J. Steel, eds., Fan Deltas; Sedimentology and Tectonic Settings, p. 387-399.

Flint, S., 1986, Sedimentary and Diagenetic Controls on Red-Bed Ore Genesis: The Middle Tertiary San Bartolo Copper Deposit, Antofagasta Province, Chile: Economic Geology, v. 81, p. 761-778.

Forsythe, R., and L. Chisholm, 1994, Paleomagnetic and structural constraints on rotation in the North Chilean coast ranges: Journal of South American Earth Sciences, v. 7, no. 3-4, p. 279-294.

França, A. B., E. J. Milani, R. L. Schneider, O. P. López, J. M. López, R. S. Suárez, H. Santa Ana, F. Weins, O. Ferreiro, E. A. Rossello, H. A. Bianucci, R. F. A. Flores, M. C. Vistalli, F. Fernandez-Seveso, R. P. Fuenzalida, and N. Muñoz, 1994, Phanerozoic Correlation in Southern South America: in A. Tankard, S. Suarez, and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 129-161.

Frutos, J., 1986, Los porfidos cupriferos andinos: consideraciones metalogenicas generales: in Geologia y recoursos minerales de Chile, Tomo II, edited by J. Fratos, R. Oyaruzan, and M. Pincheira, p. 489-501.

Return to top.

Gregory-Wodzicki, K. M., W. C. McIntosh, and K. Valasquez, 1998, Climatic and tectonic implications of the late Miocene Jakokkota Flora, Bolivian Altiplano: Journal of South American Earth Sciences, v. 11, no. 6, p. 533-560.

Gröschke, M., A. Von Hillebrandt, P. Prinz, L. A. Quinzio, and H. G. Wilke, 1988, Marine mesozoic paleogeography in northern Chile between 21°- 26° S: in H. Bahlburg, C. Breitkreuz, and P. Giese, eds., The Southern Central Andes, Lecture notes in earth sciences 17, Springer, p. 105-117.

Gröschke, M., and H. G. Wilke, 1986, Lithology and stratigraphy of Jurassic sediments in the north Chilean Pre-Cordillera between 21 Grad 30' and 22 Grad S: 9. Symposium on Latin-American Geosciences; Zentralblatt fuer Geologie und Palaeontologie, Teil I: Allgemeine, Angewandte, Regionale und Historische Geologie, v. 9-10, p. 1317-1324.

Gröschke, M., 1986, Bathonium und Callovium (Jura) in der nordchilenischen Praekordillere zwischen 21 Grad und 25 Grad S: 10. Geowissenschaftliches Lateinamerika-Kolloquium; Kurzassungen der Beitraege; Berliner Geowissenschaftliche Abhandlungen, Reihe A: Geologie und Palaeontologie, v. 135.

Gröschke, M., and H. G. Wilke, 1985, Investigaciones sedimentologicas en el Jurasico de la precordillera entre 22° y 24°, Region de Antofagasta, Chile: Actas - Congreso Geologico Chileno, v. 4, no. 1, p. 385-396.

Goerler, K., and E. Wilkes, 1991, Cordillera de la Sal/Salar de Atacama; an Oligocene to Recent record of continental evaporite sedimentation in northern Chile: Sedimentary and Paleolimnological Records of Saline Lakes.

Gustafson, L. B., W. Orquera, M. McWilliams, M. Castro, O. Olivares, G. Rojas, J. Maluenda, and M. Mendez, 2002, Multiple centers of mineralization in the Indio Muerto district, El Salvador, Chile: Economic Geology, v. 96, p. 325-350.

Gustafson, L. B., and J. P. Hunt, 1975, The Porphyry Copper Deposit at El Salvador, Chile: Economic Geology, v. 70, p. 857-912.

Häberer, H., and K. Reutter, 1986, Strukturgeologische und stratigraphische Untersuchungen im Bereich der Quebrada Guatacondo (21 Grad S),Nord-Chile: Forschergruppe: Mobilitaet Aktiver Kontinentaltaender, Berliner Geowissenschaftliche Abhandlungen, Reihe A: Geologie und Palaeontologie, v. 66, no. 1, p. 225-230.

Halpern, M., 1978, Geological significance of Rb-Sr isotopic data of northern Chile crystalline rocks of the Andean orogen between latitudes 23º and 27º South: GSA Bulletin, v. 89, p. 522-532.

Haq, B., U., J. Hardenbol, and P. R. Vail, 1987, Chronology of fluctuating sea levels since the Triassic: Science, v. 235, p. 1156-1167.

Harrington, H., 1961, Geology of parts of Antofagasta and Atacama provinces, northern Chile: AAPG Bulletin, 45,. 2, 169-197.

Hartley, A. J., G. May, G. Chong, P. Turner, S. J. Kape, and E. J. Jolley, 2000, Development of a continental forarc: A Cenozoic example from the Central Andes, northern Chile: Geology, v. 28, no. 4, p. 331-334.

Hartley, A. J., and G. May, 1998, Miocene gypcretes from the Calama Basin, northern Chile: Sedimentology, v. 45, no. 2, p. 351-364.

Hartley, A. J., S. Flint, and P. Turner, 1988, The Purilactis Formation, northern Chile; a Cretaceous foreland basin: 11 Geowissenschaftliches Lateinamerika-Kolloquium Tagungsheft, p. 51-52.

Hartley, A. J., S. Flint, P. Turner, and E. J. Jolley, 1992, Tectonic controls on the development of a  semi-arid, alluvial basin as reflected in the stratigraphy of the Purilactis Group (Upper Cretaceous-Eocene), northern Chile: Journal of South American Earth Sciences, v. 5, no. 3-4, p. 275-296.

Herail, G., J. Oller, P. Baby, M. Bonhomme, and P. Soler, 1996, Strike-slip faulting , thrusting and related basins in the Cenozoic evolution of the southern branch of the Bolivian Orocline: Tectonophysics, v. 259, p. 201-212.

Hernández, R. M., C. I. Galli, and P. Reynolds, 1999, Sedimentacion: Estratigrafia del Terdiario en el noroeste Argentino. Geologia del Noroeste Argentino: Relatorio del XIV Congreso Geologico Argentino, Tomo I, Salta, Argentina, p. 263-283.

Hernández, R. M., A. Disalvo, A. Boll, R. G. Omil, and C. Gallli, 1999, Sedimentacion: Estratigrafia secuencial del grupo Salta, con enfasis en las subcuencas de Metan-Alemania, noroeste Argentino. Geologia del Noroeste Argentino: Relatorio del XIV Congreso Geologico Argentino, Tomo I, Salta, Argentina, p. 316-328.

Hooper, B., and S. Flint, 1987, Miocene – recent tectonic evolution of the San Bartolo area, northern Chile: Symposium on Latin-American Geosciences; Zentralblatt fuer geologie und palaeontologie, Tiel 1: Allgemeine, Angewandte, Regionale und Historische Geologie, v. 7-8, p. 967-981.

Huete, C., V. Maksaev, R. Moscoso, C. Ulriksen, and H. Veraga, 1977, Antecedentes geocronologicos de rocas intrusivas y volcanicas en la Cordillera de los Andes comprendida entre la Sierra Moreno y el Rio Loa y los 21 degrees y 22 degrees lat. Sur, II region, Chile: Revista Geologica de Chile, v. 4, p. 35-41.

Ishihara, S., C. E. Eriksen, K. Sato, S. Terashima, T. Sato, and Y. Endo, 1984, Plutonic rocks of north-central Chile. Special issue for overseas geology and mineral resources; (I), Calc-alkaline Magmatism and related Mineralization in Chile: Bulletin - Japan, Geological Survey, v. 35, no. 11, p. 503-536.

James, D., and S. Sacks, 1999, Cenozoic formation of the central Andes: a geophysical perspective: in B. J. Skinner, ed., Geology and ore deposits of the central Andes. Special publication No. 7, Society of Economic Geologists, p. 1-25.

Jaillard, E., and Soler, P., 1996, Cretaceous to early Paleogene tectonic evolution of the northern central Andes (0-18°S) and its relations to geodynamics: Tectonophysics, v. 259, p. 41-53.

Jensen, A., 1985, El sobre escurrimiento de Cerro Laberinto: Actas-Congreso Geologico Chileno, v. 4, no. 2, p. 84-98.

Jensen I., and L. Oscar, 1985, Potencial petrolifero del Mesozoico marino en la Cuenca de Atacama; consideraciones en relacion a su historia de subsidencia, evolucion geotermica y posibilidades generativas: Actas-Congreso Geologico Chileno, v. 4, p. 3.651-3.673.

Jensen, O., and J. Viciente, 1976, Estudio geologico del area de “Las Juntas” del Rio Copiapo; Provincia de Atacama – Chile: Associacion Geologica Argentina, Revista, XXXI, v. 3, p. 145-173.

Jolley, E., P. Turner, G. D. Williams, A. J. Hartley, and S. Flint, 1990, Sedimentological response of an alluvial system to Neogene thrust tectonics, Atacama desert, northern Chile: Journal of the Geological Society of London, v. 147, no. 5, p. 769-784.

Jordan, T. E., and R. N. Alonso, 1987, Cenozoic stratigraphy and basin tectonics of the Andes mountains, 20 degrees–28 degrees south latitude: AAPGBulletin, v. 71, no. 1, p. 49–64.

Jurgan, H., 1977, Strukturelle und lithofazielle Entwicklung des andinen Unterkreide-Beckens im Norden Chiles (Provinz Atacama) : Geotektonische Forschungen, v. 52.

Kay, S. M., and C. Mpodozis, 2001, Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust: GSA Today, v. 11, no. 3, p. 2-9.

Kay, S. M., C. Mpodozis, and B. Coira, 1999, Neogene magmatism, tectonism, and mineral deposits of the central Andes (22 to 33 S Latitude): in B. J. Skinner, ed., Geology and ore deposits of the central Andes, Special publication No. 7, Society of Economic Geologists, p. 27-59.

Kay, S. M., and J. Abbruzzi, 1996, Magmatic evidence for Neogene lithospheric evolution of the central Andean “flat-slab” between 30° S and 32° S: Geodynamics of the Andes, Tectonophysics, v. 259, no. 1-3, p. 15-28.

Kay, S. M., V. Maksaev, R. Moscoso, C. Mpodozis, C. Nasi, and C. E. Gordillo, 1988, Tertiary Andean magmatism in Chile and Argentina between 28 degrees S and 33 degrees S; correlation of magmatic chemistry with a changing Benioff zone: Journal of South American Earth Sciences, v. 1, no. 1, p. 21-38.

Kennan, L., S. Lamb, and C. Rundel, 1995, K-Ar dates from the Altiplano and Cordillera Oriental of Bolivia; implications for Cenozoic stratigraphy and tectonics: Journal of South American Earth Sciences, v. 8, no. 2, p. 163-186.

Koett, A., R. Gaupp, and G. Woerner, 1995, Miocene to Recent history of the western Altiplano in northern Chile revealed by lacustrine sediments of the Lauca Basin (18 degrees 15'-18 degrees 40'S/69 degrees 30'-69 degrees 05'W): Geologische Rundschau, v. 84, no. 4, p. 770-780.

Kraemer, B., D. Adelmann, M. Alten, W. Schnurr, K. Erpenstein, E. Kiefer, P. Van der Bogaard, and K. Görler, 1999, Incorporation of the Paleogene foreland into the Neogene Puna Plateau; the Salar de Antofalla area, NW Argentina: Central Andean Deformation, Journal of South American Earth Sciences, v. 12, no. 2, p. 157-182.

Lahsen, A., 1982, Upper Cenozoic volcanism and tectonism in the Andes of northern Chile: Special Issue; Magmatic Evolution of the Andes; Earth-Science Reviews, v. 18, no. 3-4, p. 285-302.

Leanza, A., 1972, Geologia Regional Argentina, Simposia de geologia regional Argentina, 1st, Cordoba, Argentina, p. 187-211.

Lieben, F., R. Morita, L. Fontbote, and D. Fontignie, 1994, Sr isotopic composition of barite occurrences in the Lower Cretaceous back-arc basin between Copiapo and Vallenar: 7 Congreso Geologico Chileno; Actas, v. 2, p. 1506-1509.

Lindsay, J. M., S. de Silva, R. Trumbull, and K. Wemmer, 2001, La Pacana caldera, N. Chile: a re-evaluation of the stratigraphy and volcanology of on of the world’s largest resurgent calderas: Journal of Volcanology and Geothermal Research, v. 106, p. 145-173.

Lino, S. B., and S. C. Rivera, 1985, Sobre el ambiente depositacional de la formacion Punta del Cobre y sus implicaciones poleogeograficas: Actas - Congreso Geologico Chileno, v. 4, no. 1, p. 397-409.

Lucero, H. N., 1972, The Pampean Mountains of northern Cordoba, Argentina: Geologia Regional Argentina, p. 81-90.

Macellari, C. E., M. J. Su, and F. Townsend, 1991, Structure and seismic stratigraphy of the Atacama Basin, northern Chile: Congreso Geologico Chileno; Volumen 1, Resumenes Expandidos; Congreso Geologico Chileno: Resumenes Presentados, v. 6, p. 133-137.

Marschik, R., and  L. Fontboté, 1996, Copper(-Iron) Mineralization and Superposition of Alteration Events in the Punta Del Cobre Belt, Northern Chile: in F. Camus, R. Sillitoe, and R. Petersen, eds., Andean copper deposits: New discoveries, mineralization, styles and metallogeny, Society of Economic Geologists Special Publication No. 5, p. 171-190.

Marquillas, R. and J. Salfity, 1988, Tectonic framework and correlation of the Cretaceous-Eocene Salta group; Argentina: in H. Bahlburg, C. Breitkreuz, and P. Giese, eds., The Southern Central Andes, Lecture notes in earth sciences 17, Springer, p. 119-136.

McInnes, I. A., K. A. Farley, R. H. Sillitoe, and B. P. Kohn, 1999, Application of Apatite (U/Th)/He thermochronometry to the determination of the sense and amount of vertical displacement at the Chuquicamata porphyry copper deposit, Chile: Economic Geology, v. 94, p. 937-948.

McKee, E. H., A. C. Robinson, J. J. Rybuta, L. Cuttino, and D. R. Moscoso, 1994, Age and Sr isotopic composition of volcanic rocks in the Maricunga Belt, Chile; implications for magma sources: Journal of South American Earth Sciences, v. 7, no. 2, p. 167-177.

McKie, F. J. L., 1994, The interplay of Triassic marine and continental facies of the former extensional marginal basin of the north Chilean Cordillera de Domeyko: 7 Congreso Geologico Chileno; Actas, v. 1, p. 484-487.

McNutt, R.H., A. H. Clark, and M. Zentilli, 1994, Lead Isotopic Compositions of Andean Igneous Rocks, Latitudes 26° to 29° S: Petrologic and Metallogenic Implications: Economic Geology, v. 74, p. 827-837.

McNutt, R., J. H. Crocket, A. H. Clark, J. C. Caelles, E. Farrar, S. J. Haynes, and M. Zentilli, 1975, Initial 87Sr/86Sr Ratios of Plutonic and Volcanic Rocks of the Central Andes Between Latitudes 26° and 29° South: Earth and Planetary Science Letters, v. 27, p. 305-313.

Mon R., and J. Salfity, 1995, Tectonic evolution of the Andes of Northern Argentina: in A. Tankard, S. Suarez, and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 269-283.

Montgomery, E. L., and J. W. Harshbarger, 1985, Groundwater development from salar basins in the arid Andean Highlands of northern Chile: Actas Congreso Geologico Chileno, v. 4, no. 2, p. 5.36-5.53.

Moreno, J., 1970, Estratigrafia y paleogeografia del Cretaceo superior en la cuenca del noroeste Argentino, con especial mencion de los subgrupos Balbuena y Salta Barbara: Revista de la Associacion Geologica Argentina, Tomo XXV, v. 1, p. 9-44.

Mote, T. I., T. A. Becker, P. Renne, and G. H Brimhall, 2002, Chronology of exotic mineralization at El Salvador, Chile, by 40Ar/39Ar dating of copper wad and supergene alunite: Economic Geology, v. 96, p. 351-366.

Mpodozis, C., P. C. Cornejo, P. M. Gardweg, and S. M. Kay, 1994, Geocronologia y evolucion volcanica de la region del Volcan Copiapo, Franja de Maricunga (27 degrees 15'S): 7 Congreso Geologico Chileno; Actas, v. 2, p. 1125-1129.

Mpodozis, C., S. M. Kay, M. Gerdweg, and B. Coira, 1996, Geologia de la region de Ojos del Salado (Andes centrales, 27 degrees S); implicancias de la migracion hacia el este del frente volcanico Cenozoico superior: XIII Actas del Congreso Geologico Argentino, v. 13, p. 539-548.

Mpodozis, C., and R. Allmendinger, 1992, Extension cretacica a gran escala en el Norte de Chile (Puquios-Sierra Fraga, 27 degrees S); significado para la evolucion tectonica de los Andes: Revista Geologica de Chile, v. 19, no. 2, p. 167-197.

Mpodozis, C., and R. W. Allmendinger, 1993, Extensional tectonics, Cretaceous Andes, northern Chile (27 degrees S): GSA Bulletin, v. 105, no. 11, p. 1462-1477.

Munizaga, F., C. Huete, and F. Herve, 1985, Geochronologia K-Ar y razones iniciales Sr87/Sr86 de la faja Pacifica de desarrollos hidrothermales: IV Congreso Geologico Chileno, p. 4-357.

Muñoz, N., 1991, Marco geologico y estratigrafia de un sistema fluvio-lacustre, Paleogeno, Altiplano de Arica, norte de Chile: Congreso Geologico Chileno; Volumen 1, Resumenes Expandidos; Congreso Geologico Chileno: Resumenes Presentados, v. 6, p. 201-204.

Naranjo, J. and R. Paskoff, 1981, Estratigrafia de los depositos Cenozoicos de la region de Chiu chiu-Calama, desierto de Atacama: Revista Geologica de Chile, v. 13-14, p. 79-85.

Ossandón, G., R. Fréraut C., L. Gustafson, D. D. Lindsay, and M. Zentilli, 2002, Geology of the Chuquicamata mine: a progress report: Economic Geology, v. 96, p. 249-270.

Oyarzún, R. M., 1985, Mapa Geologica de Chile: Departamento de geociencias, Universidad  de Concepcion.

Return to top.

Padilla G., R. A., S. R. Titley, F. Pimental B., 2002, Geology of the Escondida porphyry copper deposit, Antofagasta region, Chile: Economic Geology, v. 96, p. 307-324.

Page, S., and E. Zappettini, 1999, Magmatismo: Provincias de Jujuy, Salta, Tucuman y Catamarca. Geologia del Noroeste Argentino: Relatorio del XIV Congreso Geologico Argentino, Tomo I, Salta, Argentina, p. 241-250.

Palacios, C. M., B. C. Townley, A. A. Lahsen, and A. M. Egaña, 1993, Geological development and mineralization in the Atacama segment of the South American Andes, northern Chile (26°15’-27°25’): Geologische Rundschau, v. 82, p. 652-662.

Petersen, U., 1999, Magmatic and metallogenic evolution of the central Andes: in Society of Economic Geologists, Skinner, B.J., ed., Geology and ore deposits of the central Andes. Special publication No. 7, p. 109-153.

Petrinovic, I., 1999, Magmatismo: Magmatismo Cenozoico de la Puna Austral; Volcanismo en la Cadena Volcanica del Quevar – Acay, Characteristicas, Edades y distribucion: Geologia del Noroeste Argentino, Relatorio del XIV Congreso Geologico Argentino, Tomo I, Salta, Argentina, p. 386-392.

Pichowiak, S., 1995, Early Jurassic to early Cretaceous magmatism in the coastal cordillera and the central depression of North Chile: in A. Tankard, S. Suarez, and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 203-217.

Pichowiak, S., M. Buchelt, and K. W. Damm, 1990, Magmatic activity and tectonic setting of the early stages of the Andean cycle in northern Chile: in S. M. Kay, and C. Rapela, eds.,  Plutonism from Antarctica to Alaska, GSA Special Paper 241, p. 127-135.

Pincheira, M., 1986, Situacion tectonica del borde occidental de la Cuenca Marina neocomiana tras arco en el sector de Vallenar (28 grados 15 minutos a 28 grados 30 minutos) L. S. Norte de Chile: Berliner Geowissenschaftliche Abhandlungen, Reihe A: Geologie und Palaeontologie, v. 110, p. 165.

Pindell, J. L. and K. D. Tabbutt, 1994, Mesozoic-Cenozoic Andean paleogeography and regional controls on hydrocarbon systems: in A. Tankard, S. Suarez, and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 101-128.

Porto, J. C., R. I. Fernández, and E. E. Farias, 1985, Salares de ambiente eruptivo extrandino y litoral en el moroeste Argentino. Provincias de Catamarca y Tucuman: IV Congreso Geologico Chileno, p. 1-475 –1-484.

Prinz, P., 1986, Mitteljurassische Korallen als Flachwasseranzeiger in N-Chile: Berliner Geowissenschaftliche Abhandlungen, Reihe A: Geologie und Palaeontologie, 110 ,168-169.

Prinz, P., H. G. Wilke, and A. Von Hillebrandt, 1994, Sediment accumulation and subsidence history in the Mesozoic marginal basin of Northern Chile: in K. J. Reutter, E. Scheuber, and P. J. Wigger, eds., Tectonics of the Southern Central Andes; Structure and evolution of an active continental margin, p. 219-232.

Quinzio, S. L. A., S. M. S. Bembow, P. L. Mardones, O. A. Solari, G. H. Veliz, T. E. Medina, and R. P. Quiroz, 1994, Estudio de fotolineamientos y sus relaciones con el control de las principales cuancas hidrograficas, abastecedoras de aguas de la II region de Antofagasta, Chile: 7 Congreso Geologico Chileno; Actas, v. 7, no. 1, p. 699-703.

Quinzio, S. L. A., 1987, Stratigraphische Untersuchungen im Unterjura des Südteils der Provinz Antofagasta in Nord-Chile: Berliner Geowissenschaftliche Abhandlungen, Reihe A: Geologie und Palaeontologie, v. 87, p. 105.

Radtke, U., 1985, Chronostratigraphie und neotektonik mariner terrassen in nord-und Mittelchile, Erste Ergebnisse: Actas - Congreso Geologico Chileno, v. 4, no. 3, p. 436-457.

Reijs, J., and K. McClay, 1998, Salar Grande pull-apart basin, Atacama fault system, northern Chile. Continental Transpressional and Transtentional Tectonics: Geological Society Special Publications, v. 135, p. 127-141.

Reutter, K. J., E. Scheuber, and G. Chong, 1996, The Precordilleran fault system of Chuquicamata, northern Chile; evidence for reversals along arc-parallel strike-slip faults. Geodynamics of the Andes: Tectonophysics, v. 259, no. 1-3, p. 213-228.

Reutter, K. J., P. Giese, H. J. Götze, E. Scheuber, K. Schwab, G. Schwartz, and P. Wigger, 1988, Structures and crustal development of the central Andes between 21° and 25° S: in H. Bahlburg, C. Breitkreuz, and P. Giese, eds., The Southern Central Andes, Lecture notes in earth sciences 17, Springer, p. 231-261.

Reynolds, P., C. Ravenhurst, M. Zentilli, and D. Lindsay, 1998, High-precision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile: Chemical Geology, v. 148, p. 45-60.

Riccardi, A. C., 1988, The Cretaceous System of southern South America: GSA, Memoir, 168.

Richards, J. P., A. J. Boyce, and M. S. Pringle, 2002, Geological evolution of the Escondida area, northern Chile: a model for spatial and temporal localization of porphyry Cu mineralization: Economic Geology, p. 96, p. 271-306.

Richards, J. P., S. R. Noble, and M. Pringle, 1999, A revised late Eocene age for porphyry Cu magmatism in the Escondida area, northern Chile: Economic Geology, v. 94, p. 1231-1248.

Rojo L. M., 1985, Un aporte al conocimiento del Terciario marino: Formacion Bahia Inglesa: Actas - Congreso Geologico Chileno, v. 4, no. 4, p. 1.514-1.520.

Rössling, R., 1989, Petrologie in einem tiefen Krustenstockwerk des jurassischen magmatischen Bogens in der nordchilenischen Küstenkordillere südlich von Antofagasta: Berliner Geowissenschaftliche Abhandlungen, Reihe A: Geologie und Palaeontologie, v. 112.

Salfity, J. A., R. Marquillas, M. Gardeweg, C. Ramirez, and J. Davidson, 1985, Correlaciones en el Cretacico Superior del norte de Argentina y Chile: Actas - Congreso Geologico Chileno, v. 4, p. 1.654-1.667.

Scheuber, E., T. C. Bogdanic, A. Jensen, and K. J. Reutter, 1994, Tectonic development of the Northern Chilean Andes in relation to plate convergence and magmatism since the Jurassic: in A. Tankard, S. Suarez, and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 121-139.

Sempere, T., R. F. Butler, D. R. Richards, L. G. Marshall, W. Sharp, and C. C. Swisher III, 1997, Stratigraphy and chronology of Upper Cretaceous-lower Paleogene strata in Bolivia and Northwest Argentina: GSA Bulletin, v. 109, no. 6, p. 709-727.

Sempere, T., 1994, Phanerozoic Evolution of Bolivia and Adjacent Regions: in A. Tankard, S. Suarez and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 207-230.

Sillitoe, R. H., 1991, Gold metallogeny of Chile-an introduction: Economic Geology, v. 86, p. 1187-1205.

Sillitoe, R. H., 1981, Regional aspects of the Andean Porphyry Copper Belt in Chile and Argentina: Institution of Mining and Metallurgy, Transactions, Section B, v. 90, p. B15-36.

Sillitoe, R. H., E. H. Mckee, and T. Vila, 1991, Reconnaissance K-Ar geochronology of the Maricunga gold-silver belt, northern Chile: Economic Geology, v. 86, p. 1261-1270.

Sillitoe, R.H., and E. H. McKee, 1996, Age of Supergene Oxidation and Enrichment in the Chilean Porphyry Copper Province: Economic Geology, v. 91, p. 164-179.

Silva, L. I., 1976, Antecedentes estratigraficos del Jurasico y estructurales de la Cordillera de la Costa en el Norte Grande de Chile: Actas - Congreso Geologico Chileno, v. 1, p. A83-A95.

St. John, B., A. W. Bally, and H. D. Klemme, 1984, Sedimentary provinces of the world – Hydrocarbon productive and nonproductive: AAPG, Tulsa, Oklahoma, Map with text.

Starck, D., 1999, Sedimentacion y Tectonica: Evolucion estratigrafica y sedimentaria de la cuenca Tarija: Geologia del Noroeste Argentino, Relatorio del XIV Congreso Geologico Argentino, Tomo I, Salta, Argentina, p. 227-234.

Stinnesbeck, W., Die Kreide-Tertiaergrenze in Zentral-Chile: Berliner Geowissenschaftliche Abhandlungen, Reihe A: Geologie und Palaeontologie, v. 124, p. 39.

Suarez, M. D., and M. C. Bell, 1987, Upper Triassic to Lower Cretaceous continental and coastal saline lake evaporites in the Atacama region of northern Chile: Geological Magazine, v. 124, no. 5, p. 467-475.

Suarez M. D., and M. C. Bell, 1985, Sabkhas continentales y costeros en el Triasico Superior-Cretacico Inferior de Atacama, Chile: Revista Geologica de Chile, v. 25-26, p. 145-153.

Tawackoli, S., 1999, Andine Entwickling der Ostkordillere in der Region Tupiza (Südbolivien): Berliner Geowissenschaftliche Abhandlungen, Reihe A: Geologie und Palaeontologie, v. 203.

Tosdal, R. M., P. C. Gibson, A. R. Wallace, R. F. Hardyman, R. P. Koeppen, N. C. Vilca, Q. L. Quispesivana, G. R. Tejada, C. N. Jimenez, B. J. L. Lizeca, S. F. Murillo, D. R. Moscoso, G. C. Cuitino, V. J. Maksaev, and F. F. Diaz, 1993, Summary of Pb isotopic compositions in epithermal precious-metal deposits, Orcopampa area of southern Peru, Berenguela area of western Bolivia and Maricunga Belt: in North-central Chile. Investigaciones de Metales Preciosos en le Complejo Volcanico Neogeno-Cuaternario de los Andes Centrales, p. 45-55.

Trumbull, R., R. Wittenbrink, K. Hahne, R. Emmermann, W. Buesch, H. Gerstenberger, and W. Siebel, 1999, Evidence for late Miocene to Recent contamination of arc andesites by crustal melts in Chilean Andes (25-26 S) and its geodynamic implications: Journal of South American Earth Sciences, v. 12, p. 135-155.

Vila, T., N. Lindsay, and R. Zamora, 1996, Geology of the Manto Verde copper deposit, northern Chile: A specularite-rich, hydrothermal-tectonic breccia related to the Atacama fault zone: in F. Camus, R. Sillitoe, and R. Petersen, eds., Andean copper deposits: New discoveries, mineralization, styles and metallogeny, Society of Economic Geologists Special Publication No. 5, p. 157-170.

Vila, T. G., 1985, Mapa tectogenico de yacimientos no metalicos del norte Chile Departamento de geociencias, Universidad  de Concepcion.

Vila, T. G., 1986, Fichas Mineralogenicas de yacimientos minerales no-minerales en el norte de Chile: in J. Fratos, R. Oyaruzan, and M. Pincheira, eds., Geologia y recoursos minerales de Chile. Tomo II.

Vila, T. G., and R. Sillitoe, 1991, Gold-rich porphyry systems in the Maricunga belt, northern Chile: Economic Geology, v. 86, p. 1238-1260.

Viramonte, J. G., and B. Coira, 1999, Magmatismo: Evolucion del magmatismo Cenozoico superior en los Andes centrales entre los 22° y 28° S: Geologia del Noroeste Argentino, Relatorio del XIV Congreso Geologico Argentino, Tomo I, Salta, Argentina, p. 365-386.

Viramonte, J. G., and M. Escayola, 1999, Magmatismo: El magmatico Cretaceo-Paleoceno del noroeste Argentino: Geologia del Noroeste Argentino, Relatorio del XIV Congreso Geologico Argentino, Tomo I, Salta, Argentina, p. 284-291.

Viramonte, J. G., S. M. Kay, R. Becchio, M. Escayola, and I. Novitski, 1999, Cretaceous rift related magmatism in central-western South America. Central Andean Deformation: Journal of South American Earth Sciences, v. 12, no. 2, p. 109-121.

Von Hillebrandt, A., M. Gröeschke, P. Prinz, and H. G. Wilke, 1986, Marines Mesozoikum in Nordchile zwischen 21 Grad und 26 Grad S: Berliner Geowissenschaftliche Abhandlungen, Reihe A: Geologie und Palaeontologie, v. 66, no. 1, p. 169-190.

Welsink, H. J., and M. A. Franco, 1995, Andean and pre-Andean deformation, Boomerang Hills area, Bolivia: in A. Tankard, S. Suarez, and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 481-499.

Welsink, H. J., E. Martinez, O. Aranibar, and J. Jarandilla, 1995, Structural inversion of a Cretaceous Rift Basin, Southern Altiplano, Bolivia: in A. Tankard, S. Suarez, and H. Welsink, eds., Petroleum basins of South America: AAPG Memoir 62, p. 305-324.

Wilkes, E. and K. Görler, 1994, Sedimentary and structural evolution of the Salar de Atacama depression: in K. Reutter, ed., Tectonics of the southern Central Andes; structure and evolution of an active continental margin, p. 171-188.

Wilkes, E., 1991, Die Geologie der Cordillera de la Sal, Nordchile: Berliner Geowissenschaftliche Abhandlungen, Reihe A: Geologie und Palaeontologie, v. 128, p. 145.

Zelt, C. A., A. M. Hojka, E. R. Fleuh, and K. D. McIntosh, 1999, 3D simultaneous seismic refraction and reflection tomography of wide-angle data from the central Chilean Margin: Geophysical Research Letters, v. 26, no. 16, p. 2577-2580.

Return to top.