[First Hit]

Datapages, Inc.Print this page

Longitudinal Variations in Rift Architecture and Sedimentation - Case Study from the Eastern Blocks of the Gulf of Suez, Egypt

By

Mohamed Abdel Fattah1, Mohamed Darwish1, Adel Sehim1

(1) Cairo University, Cairo, Egypt

The Gulf of Suez represents unique exposures for studying architecture and sedimentation in rift systems. The central-east rift-blocks are selected for detailed mapping and analysis aiming at reaching a model for rift development and sedimentation in time and space.

The northern rift-border (Baba) Previous HitfaultNext Hit-system reflects listric-geometry through linkage of several Previous HitfaultNext Hit-segments. Linkage areas represent deficit-nodes for ruptures. Generally, displacement cessates due south where the northern major displacement exceeded the rate of deposition and shows extensive drags and thrusts. Baba Previous HitfaultNext Hit-system merges at depth and along-strike with major rift-coastal Previous HitfaultNext Hit, which forms an intra-basinal ridge separating two different basinal-segments. These two Previous HitfaultNext Hit-systems cessate southward and synthetic approached with a master Miocene-bounding (Sidri) collateral faults. The linkage area represents low-stand zone onlapped by syn-rifting sediments. Younger channel-clastics charged the rift through this low-stand entry point.

8.5 km wide flexure-zone represents the entrapped block between Sidri Previous HitfaultNext Hit-system and the basement-border Previous HitfaultNext Hit. This flexure-zone is crossed by two longitudinal, conjugately dipping Previous HitfaultNext Hit-systems with intervening transfer zones. Sidri Previous HitfaultNext Hit-system terminates due south across a hard-linkage transfer Previous HitfaultNext Hit. South of the latter, the rift is bounded by a master Previous HitfaultNext Hit showing along-strike displacement variation and transverse folds.

The above represents drastic longitudinal variations in rift-width and blocks architecture reflecting rift development through several rift-centers that propagated and linked during three rift-phases. The linkage areas and differential Previous HitfaultTop associated subsidence controlled the Miocene basin-morphology and related sedimentation.