Click to view article in PDF format.
Sedimentological
Indices: A New Tool for Regional
Studies of Hyperpycnal Systems*
By
Carlos Zavala1,2, Jair
Carvajal2,
Jose Marcano2, and Manuel Delgado2
Search
and Discovery Article #50076 (2008)
Posted
May 15, 2008
*Adapted from extended abstract prepared for
AAPG Hedberg Conference, “Sediment
Transfer from Shelf to Deepwater – Revisiting the Delivery Mechanisms,”
March
3-7, 2008 – Ushuaia-Patagonia, Argentina.
Note: This is the second of three presentation by C. Zavala or C.
Zavala and co-authors (Search and Discovery Article #50075 (2008),
Article #50076 (2008), and
Article #50077 (2008)).
1IADO,
CONICET. Camino
2PDVSA
Exploración Oriente. Puerto
Introduction
Recent
advances in the understanding of a new
category of depositional system, termed hyperpycnal system, offer new
perspectives to improve the understanding of the distribution of
sandstone
packages. A hyperpycnal system is the subaqueous extension of the
fluvial
system (Zavala et al., 2006a) and develops as a consequence of a
relatively
high-density discharge during a flood (Figure 1).
Because of their long
duration and high sediment concentration, these flows have the capacity
of
travel 100’s of kilometers basinward, also in low gradient settings,
and to
build-up, very thick successions, especially in topography-controlled
depocenters. Hyperpycnal systems often inherit some characteristics
frequently
erroneously considered as typical of fluvial deposition, like bedload,
channelizing, and meandering.
In contrast to conventional models for turbidity sedimentation (Mutti et al., 1999), in long-lived hyperpycnal flows, coarse-grained materials are not transported at the flow head, but are dragged at the base of the turbulent flow as bedload (Figure 2) due to shear forces provided by the overpassing long-lived turbulent flow (Plink-Björklund and Steel, 2004; Zavala et al., 2006b).
uGenetic indices
uGenetic indices
|
Facies Analysis: A Genetic Approach The proximity index (Pt): The Pt index is a dimensionless number that measures how proximal the locality is in respect to the system considered as a whole. It is based on the relative dominance of bedload facies in proximal positions and the basinward increasing of suspended load facies as the long-lived hyperpycnal flow progressively wanes with the subsequent collapse of suspended materials. The proximity index can be calculated as follow: Pt=100B/(B+S) Where Pt is the proximity index, B is the total thickness of bedload facies, and S is the total thickness of suspended load facies in the analyzed core. Note that only hyperpycnal facies are considered. The Pt index varies between 0 and 100. The greater the Pt index is, the more proximal the considered location will be within the hyperpycnal system. In fact, Pt index between 100 and 50 characterizes proximal system areas, while Pt index between 50 and 0 suggests intermediate positions in the system. When Pt reaches 0, it marks the channel-lobe transition and the beginning of the distal system area. Additionally, the decay rate of the proximity index can be used as a proxy to estimate the dimensions of the hyperpycnal system under study. The laterality index (Lt): Because of the gravity nature of the hyperpycnal flow, coarse-grained facies is very sensitive to any subaqueous topography. Facies B and S tend to infill the lowermost positions of the submarine landscape. In contrast, lofting facies mostly characterizes relatively elevated areas located laterally with respect to the main axis of the hyperpycnal flows. Consequently, the Lt index is a dimensionless number that will measure the relative location of the analyzed well with respect to the main depocenters. The Lt index is useful to delineate the location of synsedimentary-growing tectonic structures in the subsurface. The laterality index can be obtained as follows: Lt=100L/(L+B+S) Where Lt is the laterality index, L is the total thickness of lofting facies, B is the total thickness of bedload facies, and S is the total thickness of suspended load facies in the analyzed core. Note that only the hyperpycnal facies are considered. In the main depocenters affected by coarse-grained hyperpycnal sedimentation, the laterality index tends to be low, typically less than 15, while lateral uplifted areas have laterality index that exceeds 35. Ternary indices: In addition to the proximity and laterality indices, ternary indices and diagrams are useful to depict the different proportions between the three main facies categories used in the genetic analysis (B, S, and L facies, Figure 4). B, S and L indices are calculated, comparing the total thickness of each category with respect to the total thickness of hyperpycnal facies, in the form that B+S+L=100. The ternary diagrams allow one to define several “fields” (uplifted areas, flow margin, flow axis, proximal channels, and distal lobes, Figure 3) which are useful in analyzing the position of the well with respect to the hyperpycnal system considered as a whole. Knapp, R.T., 1943, Density currents: Their mixing characteristics and their effect on the turbulence structure of the associated flow: Proceedings 2nd Hydrology Conference, University of Iowa, Studies in Engineering Bulletin 27. Marcano, J., Carvajal, J., Delgado, M., and Zavala, C., 2008, Facies prediction in hyperpycnal systems. The Oligocene Merecure Formation, Venezuela; oral presentation at Hedberg Conference. Mutti, E., Mavilla, N., Angella, S., and Fava L.L., 1999. An introduction to the analysis of ancient turbidite basins from an outcrop perspective: AAPG Continuing Education Course Note 39, p. 1-98. Tulsa. Plink-Björklund, P., and Steel, R.J., 2004, Initiation of turbidite currents: Outcrop evidence for Eocene hyperpycnal flow turbidites: Sedimentary Geology, v. 165, p. 29-52. Zavala, C., Ponce J., Arcuri, M., Drittanti, D., Freije, H., and Asensio, M., 2006a. Ancient Lacustrine hyperpycnites: A depositional model from a case study in the Rayoso Formation (Cretaceous) of west-central Argentina: Journal of Sedimentary Research, v. 76, p. 40-58. Zavala, C., Arcuri, M., and Gamero H., 2006b, Towards a genetic model for the analysis of hyperpycnal systems: 2006 GSA Annual Meeting, 22-25 October, Philadelphia, PA., USA. Topical session T136: River Generated Hyperpycnal Events and Resulted Deposits in Modern and Ancient Environments. Zavala, C., Gamero H., and Arcuri, M., 2006c, Lofting rhythmites: A diagnostic feature for the recognition of hyperpycnal deposits: 2006 GSA Annual Meeting, 22-25 October, Philadelphia, PA., USA. Topical session T136: River Generated Hyperpycnal Events and Resulted Deposits in Modern and Ancient Environments. Zavala, C., Arcuri, M., Gamero Díaz, H., and Contreras, C., 2007a, The composite bed: A new distinctive feature of hyperpycnal deposition: 2007 AAPG Annual Convention and Exhibition (April 1 - 4, 2007). Long Beach, California USA. Zavala, C., Marcano J., and Carvajal J., 2007b. Proximity and laterality indexes: A new tool for the analysis of ancient hyperpycnal deposits in the subsurface. GSTT 4th Geological Conference, “Caribbean Exploration – Planning for the Next Century,” June 17-22, 2007 – Port of Spain, Trinidad. Return to top.
|