Abstract: Reconnaissance Amplitude Versus Offset Techniques in the Niger Delta
John Barton, Kenny Gullette
Reconnaissance AVO (amplitude vs. offset) techniques have been invaluable in allowing the analyses and mapping of AVO on large-volume data sets in the Nigerian Niger Delta. Forward modelling of rock properties derived from well data on the shelf and regional ties of common depth point gathers to well control show that a shale on hydrocarbon bearing sand typically generates increasing amplitude with offset [Class 2 and Class 3 type anomalies of the Rutherford and Williams (1989) classification]. Consequently, processing and display techniques have been developed that distinguish the increasing amplitude with offset response associated with hydrocarbon bearing sands from the flatter AVO response of background water wet sands and shales. Attributes are created from angle sta ks rather than by analyses of individual common depth point gathers over an entire data set. We show examples of a new AVO attribute which we call the Enhanced Restricted Gradient that highlights Class 2 and Class 3 type AVO anomalies more clearly than some of the standard AVO attributes used in the industry. The techniques described here provide a cost-effective and practical way of evaluating AVO character on large volume 2D and 3D data sets and should also be useful in other areas worldwide where hydrocarbon bearing reservoirs generate increasing amplitude with offset.
AAPG Search and Discovery Article #90951©1996 AAPG International Conference and Exhibition, Caracas, Venezuela