Datapages, Inc.Print this page

Faulting, Fracturing, and Sealing in Foreland Thrust Belts: Examples from the Subalpine Chains

Sue Bowler, Robert W. H. Butler

The hydrocarbon potential of foreland thrust belts arises from source and reservoir rocks juxtaposed by the movement of thrust sheets, promoting maturation by loading and generating structural traps. Deformation in thrust belts can be localized on fault zones or distributed throughout thrust sheets; different deformation mechanisms operate to increase and decrease permeability. Migration and reservoir properties may be enhanced or reduced by faulting and fault-related deformation. These processes are examined in detail using examples from the northwest subalpine chains of France, a fold-and-thrust belt of well-differentiated Mesozoic shales and carbonates. Seeps of bitumen in foreland basin sediments indicate some migration of hydrocarbons along faults linking probable so rce and reservoir areas.

Detailed examination of fault rocks and thrust sheets shows that fracture formation is an important strain mechanism which has the potential to form regions of enhanced permeability in structures such as hanging wall anticlines. However, the fractures observed are in general recemented, forming with crack-seal crystal growth. The faults themselves are complex zones up to tens of meters thick of subparallel anastomosing gouge, fractures, stylolites, and crystalline calcite, indicating synchronous cataclasis and pressure solution. The range of scales of fracturing suggests stick-slip (microseismic) fault activity. Permeability of the fault zones is enhanced during seismic fault slip and is otherwise steadily decreased by pressure solution and calcite deposition. The available migration athways, and hence the location of potential reservoirs, is controlled by the timing, mechanisms, and extent of fault activity in this common and productive tectonic regime.

AAPG Search and Discovery Article #91032©1988 Mediterranean Basins Conference and Exhibition, Nice, France, 25-28 September 1988.