Rupturing Continental Lithosphere: Initiatives of the U.S. Margins Program and Collaborative Research Goals in the Gulf of Suez, Northern Red Sea and Gulf of Aqaba
By
Garry Karner1, Michael S. Steckler1, James R. Cochran1
(1) Columbia University, Palisades, NY
The northern Red Sea/Gulf of Suez system was selected by the US scientific community as one of two crucial regions worldwide for coordinated research under the National Science Foundation MARGINS Program on rupturing cratonic continental lithosphere and the formation of new oceanic lithosphere. The reason is clear - the northern Red Sea is in the latest stages of continental rifting and starting its transition to seafloor spreading whereas active extension characterizes the Gulfs of Suez and Aqaba. This region provides excellent exposure of faults and syn-rift sediments that record the earliest phases of extension and subsequent structural reorganization as breakup is approached.
We are planning a coordinated research program in collaboration with Egyptian and Saudi colleagues. If successful, work will proceed by characterizing geophysically and geologically the entire rift system at a scale and resolution necessary to generate a framework for future geological, geodetic and geochemical studies. Our projects will consist of large-scale active and passive seismic experiments, marine multichannel seismic and geophysical surveying, integration of existing industry stratigraphic and structural data, focused outcrop studies of fault development and interactions, and numerical modeling. The proposed research hopes to build upon an already funded passive seismic experiment across the Gulf of Suez rift. The proposal objectives are to: 1) determine the strain partitioning across the Gulf of Suez and Red Sea extensional systems as functions of space and time within the upper and lower crust, and 2) map the degree, distribution and patterns of lower crustal and lithosphere mantle flow.