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Abstract 

 

Gale Crater was selected as the Mars Science Laboratory landing site largely because remote images suggested the crater 
contains a thick sequence of sedimentary rocks interpreted to be eolian, fluvial, and lacustrine deposits (previous work 
summarized by Anderson and Bell, 2010). In the year since landing, the rover, Curiosity, identified and examined deposits of all 
three of these depositional environments. Eolian deposits examined by Curiosity include the Rocknest sand shadow 
(unconsolidated sand in the lee of rocks on the surface described by Blake et al. in press) and thin sandstones beds with pinstripe 
laminae deposited by migrating wind ripples. On its route to Mt. Sharp, it is likely that the rover will pass near active eolian 
dunes and “washboard” deposits that have previously been interpreted as preserved eolian dunes. Fluvial deposits examined by 
Curiosity include both conglomerates and sandstones. The conglomerates have textures of fluvial conglomerates and contain 
rounded pebbles indicating substantial abrasion (Williams et al., 2013). The fluvial sandstones are cross-bedded (including 
compound cross-bedding), with dip directions indicating transport generally toward the southeast (toward Mt. Sharp rather than 
away from it). Fractures interpreted to be desiccation cracks and interbedded eolian (pinstriped) sandstones suggest that fluvial 
activity alternated with dry, windy, periods. Curiosity also examined deposits interpreted as distal fluvial or lacustrine 
mudstones (Sheepbed mudstone) at a location that is topographically lower than the fluvial sandstones and conglomerates. That 
unit is discussed in other abstracts in this session.  
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Curiosity Traverse Map 
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Curiosity at Shaler, as seen by HiRISE 
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Lacustrine Sheepbed mudstone.   
Many veins, but few (if any) primary physical structures documented.  
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Shaler outcrop context 

Shaler outcrop 

Sheepbed Mbr 
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Grotzinger et al. 2013 8 
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Stratigraphic architecture 
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~10 cm 

NASA/JPL-Caltech/MSSS Sol318_mcam01302 
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MAHLI image – sol 323 Target Gudrid 
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~30 cm 

NASA/JPL-Caltech/MSSS Sol319_mcam01306 

Cross-stratification 
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~30 cm 

NASA/JPL-Caltech/MSSS Sol319_mcam01306 

Compound cross-stratification 
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Compound cross-stratification 
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Rubin & Carter (2005) 




Spatial variability in direction of dip 
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NASA/JPL-Caltech/MSSS 
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Convoluted facies 
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Vertical variability in grain size (fining upward) 

~ 50 cm 
Sol309_mcam01275 NASA/JPL-Caltech/MSSS 
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Presenter’s notes: Daily cycles in river discharge.  Peak discharge can suspend more sand (top) and coarser sand (lower plot).  
Positively correlated trends indicate flow-regulated transport. 



~5 cm 

Sol311_mcam01279 
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Aeolian wind-ripple 
pin-stripe laminae 
(Hunter, 1977), in 
Entrada Sandstone. 

Aeolian sandstone at Shaler 
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Spatial variability in grain size and sedimentary structures 
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Stratification (lenses) or veins? 

Cross-bedding 

Sol 392 
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Mosaic of MAHLI images acquired on Sol 85 
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Sand-shadow dunes in Qaidam Basin, China 
Sand accumulates in weak flow in lee of obstacles (Bagnold). 

Obstacle to wind 

Wind 
direction 
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MAHLI focus merge product from Sol 58 
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MAHLI focus merge product from Sol 58 

26 

surface grains are ~1 mm in size 
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MAHLI image from Sol 67 
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MAHLI focus merge product from Sol 58 
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MAHLI image from Sol 66 
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Kocurek and others, 2013. 30 

Assume Application of Law-of-the-Wall 

U z ~ wind speed at height z 

k = 0.407 
Zo varies with grain size and height of surface features such as wind 
ripples (Bagnold 1941), but also the height and intensity of the 
saltation cloud (Owen 1964). 

Assume Zo ~ 0.3 mm where Zo ~ k/ 30 and k is 10 mm 
ripple height. 

lUi m ~ 51 m/s (114 mph) ~ Fluid threshold speed I 
lUi m ~ 37 m/s (84 mph) ~ Impact threshold speed I 



~50 m 

Dunes in crater, sol 426. 
NASA/JPL-Caltech/Univ. of Arizona 31 



NASA/JPL-Caltech/MSSS.  Dunes in crater, sol 426. 32 



NASA/JPL-Caltech/MSSS.  Dunes in crater, sol 426. 33 
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100 m 

Polygonal dunes, Victoria Crater, Mars 

CREDIT: NASA/JPL/Univ. of Arizona 34 



J.R.L. Allen, 1982, Sedimentary Structures, Their Character and Physical Basis, Volume 1 
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Lab 
Observed streamlines in recirculating flow in cylinder with 
open top. 
 
 
 
 
 
 
 
 
 
 
 

From Haigermoser, Scarano, Onorato, 2009, Experimental 
Fluids 36 
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Curiosity Traverse Map 
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Curiosity Traverse Map 
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Direction of 
sand flux if 
dunes are 
longitudinal 



Curiosity Traverse Map 
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Direction of 
sand flux 
indicated by 
belt of dunes 

Direction of 
sand flux if 
dunes are 
longitudinal 
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Presenter’s notes: So what is the potential origin of the washboard unit. It has been previously suggested that they might 
represent either preserved sedimentary bedforms, or the exposure and differential erosion of preferentially lithified strata. We 
suggest that both of these suggestions are, in part correct. Easily see how these could be interpreted as preserved bedforms. 

Washboard unit (wavelength - 40m) 
~~ 
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Fire ring 

42 NASA/JPL-Caltech/MSSS; Sol 528 



43 

NASA/JPL-Caltech/MSSS 

Sol 567 

• -
• • • 

• ... • -
• 

• - - • • -• • - .. • 
• 

• 



44 

NASA/JPL-Caltech/MSSS 

Sol 569 

- -"-~-- " ""' "10~'_ 
"- '> (I 'lt. 

", 



45 



Daily cycles in flow cause daily cycles in grain size of sediment. 
In this case (Colorado River), daily flow cycles are dam releases for hydropower. 
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NASA/JPL-Caltech/MSSS 

Kimberley (where Curiosity is now) 
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Mt. Sharp foothills 
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Layers, Canyons, and Buttes of Mount Sharp 

This boulder is the 

size of Curiosity 
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Most of these images from our 

20-month journey were taken 

using Curiosity’s Mastcam. 
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