--> Horizon Tracking on Workstations, by Les Denham and Dave Agarwal, #40141 (2005).
[First Hit]

Datapages, Inc.Print this page

Click to article in PDF format.

      

 

GCHorizon Tracking on Workstations*

By

Les Denham1 and Dave Agarwal1
 
Search and Discovery Article #40141 (2005)
Posted February 6, 2005
 
*Adapted from the Geophysical Corner column in AAPG Explorer, November, 2004, entitled "Track Geology in Greater Detail” and prepared by the authors. Appreciation is expressed to the authors, to Alistar R. Brown, editor of Geophysical Corner, and to Larry Nation, AAPG Communications Director, for their support of this online version.
 
1Interactive Previous HitInterpretationNext Hit and Training, Houston, Texas ([email protected]; dave@[email protected])

 

General Statement 

Before Previous HitseismicNext Hit Previous HitinterpretationNext Hit workstations, interpreters marked paper sections with each horizon, then laboriously read off the time of the reflection -- usually to no better than ±5 ms -- and at intervals of perhaps every tenth trace. Computers, however, remember exactly where the interpreter picks -- and often pick more accurately. Autotracking on lines in either 2-D or 3-D Previous HitdataNext Hit, and through a volume in 3-D, picks with precision on every trace, so machine horizon tracking today can reveal geology in greater detail than manual Previous HitinterpretationNext Hit can ever achieve.

 

 

uGeneral statement

uFigure captions

uPrevious HitInterpretationNext Hit

uAutomatic tracking

uAlternative

uConclusion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uGeneral statement

uFigure captions

uPrevious HitInterpretationNext Hit

uAutomatic tracking

uAlternative

uConclusion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uGeneral statement

uFigure captions

uPrevious HitInterpretationNext Hit

uAutomatic tracking

uAlternative

uConclusion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uGeneral statement

uFigure captions

uPrevious HitInterpretationNext Hit

uAutomatic tracking

uAlternative

uConclusion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uGeneral statement

uFigure captions

uPrevious HitInterpretationNext Hit

uAutomatic tracking

uAlternative

uConclusion

 

Figure Captions

Figure 1. Tracking on the positive-to-negative zero crossing (dark green) as well as on the peak (cyan).

Figure 2. Structure map from automatic tracking of the peak on the conventional migrated Previous HitdataNext Hit.

Figure 3. Cosine of instantaneous phase section. The green pick shows tracking on conventional Previous HitdataNext Hit, the red pick shows tracking on cosine-of-phase.

Figure 4. Structure map from automatic tracking of the peak on cosine-of-phase Previous HitdataNext Hit. Compare with Figure 2. Errors and omissions are different.

 

Click to view sequence of structure maps (Figures 2 and 4).

 

Figure 5. Structure map from automatic tracking of the positive-to-negative zero crossing on the conventional migrated Previous HitdataNext Hit.

Figure 6. Structure map from automatic tracking of the positive-to-negative zero crossing on the cosine-of-phase Previous HitdataNext Hit.

 

Click to view sequence of structure maps (Figures 5 and 6).

Return to top.

Previous HitInterpretationNext Hit (Correlation): Decisions and Parameters 

The first decision is what Previous HitseismicNext Hit event to pick. Figure 1 shows a geological marker in two wells; a continuous reflection approximately ties the two markers, but in one well the marker is on a positive-to-negative zero crossing, while it is close to a peak in the second well. A synthetic seismogram might help, but that is beyond the scope of this article. Often the interpreter can simply decide on a continuous event to pick close to the marker to be mapped. 

Most reflections are composite; the perfect phase point to pick is uncertain. All Previous HitinterpretationNext Hit systems can "snap" to, or follow, maximum negative, maximum positive or zero crossings (going negative with increasing time, and going positive). In Figure 1 the reflection is picked on the peak of an event, and on the positive-to-negative zero crossing. Each horizon is an automatic track along a line from a single seed point on one trace. 

Any Previous HitinterpretationNext Hit system has parameters that can be set to specify the way in which the correlation from trace to trace is done. These may include:

  • Maximum time (or depth) change from one trace to the next.

  • Whether to pick the largest event within this limit, or the closest.

  • Maximum amplitude change from one trace to the next.

  • Whether to follow an event, or to cross-correlate.

 

If the parameters are too restrictive, the tracking leaves gaps. If the parameters are too loose, it makes mistakes.

 

Automatic Tracking for 3-D Previous HitDataNext Hit 

For 3-D Previous HitdataNext Hit, automatic tracking from one trace to the next can be extended throughout the Previous HitdataNext Hit volume. Figure 2 shows the result of automatic picking of the peak. Where the event mapped becomes less obvious, the automatic picking breaks down. 

The conventional Previous HitseismicNext Hit Previous HitdataNext Hit may not give the most accurate picture of geological structure when you pick on a constant phase point (peak, trough or zero crossing), especially if the reflection is weak. Previous HitSeismicNext Hit attributes allow removing the amplitude information to make all reflections the same. The instantaneous phase attribute does this, but is discontinuous where the phase passes 180 degrees (it jumps to -180 degrees). 

A more elegant attribute is cosine of instantaneous phase, which is -1.0 for both 180 degrees and -180 degrees (Figure 3). Notice there are differences of up to 1.1 meters (1.5 meters, or five feet -- a significant depth error in many prospects) between the two tracked horizons -- green (picked on conventional Previous HitdataNext Hit) and red (picked on cosine-of-phase). 

Workstations interpolate between samples using a spline function, so the peak or zero-crossing is picked with a much greater precision than the sample interval (two meters in this Previous HitdataNext Hit). This difference between the two horizons is real. Automatic tracking is at least an order of magnitude more accurate than manual picking; such a small time difference would never be detected with manual timing. 

Along with the structure map, we can get a reflection amplitude map, either trace amplitude or the reflection magnitude. Reflection amplitude measurements are impractical with manual picking. 

With the cosine-of-phase Previous HitdataNext Hit volume, details differ (compare Figure 4 and Figure 2). Either of these maps show an excellent picture of the structure in most places, and we have achieved it by manually identifying the event on one trace only.

The results vary with which point on the reflection is used for picking. In this example, automatic picking fails over a larger area if the positive-to-negative zero crossing is used on the conventional Previous HitdataNext Hit (Figure 5). There are fewer gaps with cosine-of-phase (Figure 6), but there are obvious errors in several areas.

 

Alternative to Automatic Tracking 

For 3-D, an alternative to automatic tracking is to pick manually a subset of the Previous HitdataNext Hit, then interpolate. This is particularly attractive if automatic tracking is unreliable because the event is weak or the horizon is extensively faulted. In this case the steps to producing both a structure map and an amplitude map are:

  1. Manually pick a subset of the Previous HitdataNext Hit, such as every tenth line and crossline, by displaying the lines on the screen and picking exactly where you want the horizon, using automatic tracking along the line, or point-to-point Previous HitinterpretationNext Hit.

  2. Interpolate between the picked lines.

  3. Snap to a peak, trough or zero crossing.

  4. Smooth if needed.

  5. Map and extract amplitudes.

 

This alternative technique can be used over the whole of a 3-D survey or only over parts where automatic picking is unreliable and the results merged with automatic picking in areas where that technique is reliable.

 

Concluding Comments 

Automatic tracking of Previous HitseismicNext Hit horizons in good quality Previous HitdataNext Hit from a few seed points is a powerful tool for rapidly completing Previous HitinterpretationNext Hit of 3-D Previous HitseismicNext Hit Previous HitdataNext Hit volumes. It reveals geology with much greater precision and detail than manual Previous HitinterpretationTop can.

However, there are pitfalls in its use; it is less than reliable unless the interpreter understands the geology and restricts the automatic picking by using parameters chosen to minimize mis-picking. Interpolation is often a good alternative for 3-D if automatic tracking will not work reliably

 

Return to top.