Reservoir Prediction Based on Geostatistical Inversion by the Facies Trend
Model
: A Case Study From the Gudian Block, Northeast China
Abstract
Abstract Accurate reservoir prediction in the early stage of gas field exploration generally is very difficult because few seismic
data and well logs data are typically available. The uncertainty throughout the reservoir prediction process causes the illusions of the geological interpretation. Using more advanced techniques of the reservoir prediction to improve the credibility of the prediction results is necessary. In order to reduce the uncertainty in the reservoir prediction, we analyzed
seismic
data and well logs data from tight reservoirs in the Gudian block of the northeast China, and evaluated the coincidence rate between new and conventional methods. The Shahezi Formation in the Gudian Block of the northeast China is one of the major reservoirs. A slope-type fan deltaic system which shows obvious chaotic
seismic
reflections on the
seismic
section is deposited in the west of the Shahezi Formation, whereas a braided deltaic system which shows progradational
seismic
reflections is deposited in the east of the Shahezi Formation. The conventional
model
-based
seismic
inversion methods are difficult to describe the boundaries of the fan while ensuring the high precision of the braided river prediction. So we added a constraint called the facies trend
model
to the geostatistical inversion. The facies trend
model
is a
model
that shows the probability of the sedimentary facies on the basis of the
stratigraphic
framework. First, through core data, conventional well logs data, FMI data, and post-stack
seismic
data, we characterized the boundaries of the fan delta. Secondly, we used well logs data to interpret lithology. Meanwhile, we used probability density function (PDF) and variogram to determine the overall trend of lithology data distribution in the study area. Then, we use the gravel content and the boundaries of the fan delta to establish a facies trend
model
. Finally, combining the low-frequency
stratigraphic
framework
model
, we used the Markov chain Monte Carlo (MCMC) methods to perform the
seismic
inversion under the constraints of the facies trend
model
. The inversion results are output when the artificial synthetic
seismic
trace and the original
seismic
trace have the smallest residual. This study implies that geostatistical inversion by facies trend
model
is better than conventional
seismic
inversion methods in predicting complex reservoirs which are similar to the Shahezi Formation in the Gudian Block of the northeast China, and reduce the uncertainty of geostatistical inversion. At the same time, the accuracy of the facies trend
model
in the process of the geostatistical inversion directly determines the credibility of reservoir prediction results.
AAPG Datapages/Search and Discovery Article #90350 © 2019 AAPG Annual Convention and Exhibition, San Antonio, Texas, May 19-22, 2019